【題目】如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹桿頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.
【答案】古塔的高度是米.
【解析】
先根據(jù)小明、竹竿、古塔均與地面垂直,EH⊥AB可知,BH=DG=EF=1.6m,再小明眼睛離地面1.6m,竹桿頂端離地面2.4m求出CG的長,由于CD∥AB可得出△EGC∽△EHA,再根據(jù)相似三角形的對應(yīng)邊成比例可求出AH的長,進(jìn)而得出AB的長.
∵小明、竹竿、古塔均與地面垂直,EH⊥AB,
∴BH=DG=EF=1.6m,EG=DF,GH=DB,
∵小明眼睛離地面1.6m,竹桿頂端離地面2.4m,
∴CG=CD-EF=2.4-1.6=0.8m,
∵CD∥AB,
∴△EGC∽△EHA,DF=2m,DB=33m,
∴,即,
解得AH=14m,
∴AB=AH+BH=14+1.6=15.6m,
答:古塔的高度是15.6米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃岡市人杰地靈、山青水秀,擁有豐富的旅游資源,楚龍旅行社為吸引市民組團(tuán)去大別山某風(fēng)景區(qū)旅游,推出了如下收費標(biāo)準(zhǔn):
一單位組織員工去該風(fēng)景區(qū)旅游,共支付給楚龍旅行社旅游費用元,請問該單位這次共有多少員工去旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雙曲線上一點,過作軸,軸的垂線,垂足分別為、,矩形的面積為,則雙曲線與直線在交點在第一象限內(nèi)的點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠C=90°,AC=8,BC=6,AD平分∠BAC,交BC于點D,DE⊥AB于點E.
(1)求BE的長;
(2)求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究,下面是小穎的探究過程,請你補充完整.
(1)列表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -2 | -1 | 0 | 1 | 0 | -1 | k | … |
①____;
②若,,,為該函數(shù)圖象上不同的兩點,則____;
(2)描點并畫出該函數(shù)的圖象;
(3)①根據(jù)函數(shù)圖象可得:該函數(shù)的最大值為____;
②觀察函數(shù)的圖象,寫出該圖象的兩條性質(zhì)________________________;_____________________;
③已知直線與函數(shù)的圖象相交,則當(dāng)時,的取值范圍為是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三個頂點坐標(biāo)分別為A(-2,4),B(-3,1),C(-1,1),以坐標(biāo)原點O為位似中心,相似比為2,在第二象限內(nèi)將△ABC放大,放大后得到△A'B'C'.
(1)畫出放大后的△A'B'C',并寫出點A',B',C'的坐標(biāo).(點A,B,C的對應(yīng)點為A',B',C')
(2)求△A'B'C'的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國邊防局接到情報,近海處有一可疑船只A正向公海方向行駛,邊防部迅速派出快艇B追趕(如圖1).圖2中l1、l2分別表示兩船相対于海岸的距離s(海里)與追趕時間t(分)之間的關(guān)系.根據(jù)圖象問答問題:
(1)①直線l1與直線l2中 表示B到海岸的距離與追趕時間之間的關(guān)系
②A與B比較, 速度快;
③如果一直追下去,那么B (填能或不能)追上A;
④可疑船只A速度是 海里/分,快艇B的速度是 海里/分
(2)l1與l2對應(yīng)的兩個一次函數(shù)表達(dá)式S1=k1t+b1與S2=k2t+b2中,k1、k2的實際意義各是什么?并直接寫出兩個具體表達(dá)式
(3)15分鐘內(nèi)B能否追上A?為什么?
(4)當(dāng)A逃離海岸12海里的公海時,B將無法對其進(jìn)行檢查,照此速度,B能否在A逃入公海前將其攔截?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條東西走向的筆直公路,點A、B表示公路北側(cè)間隔150米的兩棵樹所在的位置,點C表示電視塔所在的位置.小王在公路PQ南側(cè)直線行走,當(dāng)他到達(dá)點P的位置時,觀察樹A恰好擋住電視塔,即點P、A、C在一條直線上,當(dāng)他繼續(xù)走180米到達(dá)點Q的位置時,以同樣方法觀察電視塔,觀察樹B也恰好擋住電視塔.假設(shè)公路兩側(cè)AB∥PQ,且公路的寬為60米,求電視塔C到公路南側(cè)PQ的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com