【題目】如圖,在平面直角坐標(biāo)系中,A為y軸正半軸上一點(diǎn),過(guò)點(diǎn)A作x軸的平行線(xiàn),交函數(shù)的圖象于B點(diǎn),交函數(shù)的圖象于C,過(guò)C作y軸和平行線(xiàn)交BO的延長(zhǎng)線(xiàn)于D.
(1)如果點(diǎn)A的坐標(biāo)為(0,2),求線(xiàn)段AB與線(xiàn)段CA的長(zhǎng)度之比;
(2)如果點(diǎn)A的坐標(biāo)為(0,a),求線(xiàn)段AB與線(xiàn)段CA的長(zhǎng)度之比;
(3)在(1)條件下,四邊形AODC的面積為多少?
【答案】(1)線(xiàn)段AB與線(xiàn)段CA的長(zhǎng)度之比為;(2)線(xiàn)段AB與線(xiàn)段CA的長(zhǎng)度之比為;(3)15.
【解析】試題分析:
(1)由題意把y=2代入兩個(gè)反比例函數(shù)的解析式即可求得點(diǎn)B、C的橫坐標(biāo),從而得到AB、AC的長(zhǎng),即可得到線(xiàn)段AB與AC的比值;
(2)由題意把y=a代入兩個(gè)反比例函數(shù)的解析式即可求得用“a”表示的點(diǎn)B、C的橫坐標(biāo),從而可得到AB、AC的長(zhǎng),即可得到線(xiàn)段AB與AC的比值;
(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行線(xiàn)分線(xiàn)段成比例定理即可求得CD的長(zhǎng),從而可由梯形的面積公式求出四邊形AODC的面積.
試題解析:
(1)∵A(0,2),BC∥x軸,
∴B(﹣1,2),C(3,2),
∴AB=1,CA=3,
∴線(xiàn)段AB與線(xiàn)段CA的長(zhǎng)度之比為;
(2)∵B是函數(shù)y=﹣(x<0)的一點(diǎn),C是函數(shù)y=(x>0)的一點(diǎn),
∴B(﹣,a),C(,a),
∴AB=,CA=,
∴線(xiàn)段AB與線(xiàn)段CA的長(zhǎng)度之比為;
(3)∵=,
∴=,
又∵OA=a,CD∥y軸,
∴,
∴CD=4a,
∴四邊形AODC的面積為=(a+4a)×=15.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,老師拿出三個(gè)邊長(zhǎng)都為5cm 的正方形硬紙板,他向同學(xué)們提出了這樣一個(gè)問(wèn)題:若將三個(gè)正方形紙板不重疊地放在桌面上,用一個(gè)圓形硬紙板將其蓋住,這樣的圓形硬紙板的最小直徑應(yīng)有多大?問(wèn)題提出后,同學(xué)們經(jīng)過(guò)討論,大家覺(jué)得本題實(shí)際上就是求將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓形硬紙板能蓋住時(shí)的最小直徑.老師將同學(xué)們討論過(guò)程中探索出的三種不同擺放類(lèi)型的圖形畫(huà)在黑板上,如圖所示:
(1)通過(guò)計(jì)算(結(jié)果保留根號(hào)與π).
(Ⅰ)圖①能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑應(yīng)為
(Ⅱ)圖②能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為
(Ⅲ)圖③能蓋住三個(gè)正方形所需的圓形硬紙板最小直徑為
(2)其實(shí)上面三種放置方法所需的圓形硬紙板的直徑都不是最小的,請(qǐng)你畫(huà)出用圓形硬紙板蓋住三個(gè)正方形時(shí)直徑最小的放置方法,(只要畫(huà)出示意圖,不要求說(shuō)明理由),并求出此時(shí)圓形硬紙板的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知△ABC中,P是邊AB上的一點(diǎn),連接CP.
(1)要使△ACP∽△ABC,還需要補(bǔ)充的一個(gè)條件是_____.
(2)若△ACP∽△ABC,且AC=,AB=3,求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD和四邊形ACED都是平行四邊形,點(diǎn)R為DE的中點(diǎn),BR分別交AC、CD于點(diǎn)P、Q.
(1)請(qǐng)寫(xiě)出圖中各對(duì)相似三角形(相似比為1除外);
(2)求BP:PQ:QR.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了了解學(xué)生每天完成家庭作業(yè)所用時(shí)間的情況,從每班抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,并將所得數(shù)據(jù)進(jìn)行整理,制成條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,如圖所示:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中扇形D的圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)其中有多少名學(xué)生能在1.5 h內(nèi)完成家庭作業(yè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC相切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小鵬學(xué)完解直角三角形知識(shí)后,給同桌小艷出了一道題:“如圖所示,把一張長(zhǎng)方形卡片ABCD放在每格寬度都為6mm的橫格紙中,恰好四個(gè)頂點(diǎn)都在橫格線(xiàn)上,已知a=36°,求長(zhǎng)方形卡片的周長(zhǎng).”請(qǐng)你幫小艷解答這道題.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BE是AB的延長(zhǎng)線(xiàn),指出下面各組中的兩個(gè)角是由哪兩條直線(xiàn)被哪一條直線(xiàn)所截形成的?它們是什么角?
(1)∠A和∠D;
(2)∠A和∠CBA;
(3)∠C和∠CBE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com