【題目】如圖,若點(diǎn)M是y軸正半軸上的任意一點(diǎn),過點(diǎn)M作PQ∥x軸,分別交函數(shù)y=(y>0)和y=(y>0)的圖象于點(diǎn)P和Q,連接OP和OQ,則下列結(jié)論正確是( 。
A.∠POQ不可能等于90°
B.
C.這兩個函數(shù)的圖象一定關(guān)于y軸對稱
D.△POQ的面積是
【答案】D
【解析】
利用特例對A進(jìn)行判斷;根據(jù)反比例函數(shù)的幾何意義得到S△OMQ=OMQM=﹣k1,S△OMP=OMPM=k2,則可對B、D進(jìn)行判斷;利用關(guān)于y軸對稱的點(diǎn)的坐標(biāo)特征對C進(jìn)行判斷.
解:A、當(dāng)k1=3,k2=﹣,若Q(﹣1,),P(3,),則∠POQ=90°,所以A選項錯誤;
B、因為PQ∥x軸,則S△OMQ=OMQM=﹣k1,S△OMP=OMPM=k2,則=﹣,所以B選項錯誤;
C、當(dāng)k2=﹣k1時,這兩個函數(shù)的圖象一定關(guān)于y軸對稱,所以C選項錯誤;
D、S△POQ=S△OMQ+S△OMP=|k1|+|k2|,所以D選項正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)y與自變量x的部分對應(yīng)值如表:
x | … | ﹣2 | ﹣1 | 0 | 2 | … |
y | … | ﹣3 | ﹣4 | ﹣3 | 5 | … |
(1)求二次函數(shù)的表達(dá)式,并寫出這個二次函數(shù)圖象的頂點(diǎn)坐標(biāo);
(2)求出該函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖,對于下列說法:①abc<0;②a﹣b+c<0;③3a+c<0;④當(dāng)﹣1<x<3時,y>0.其中正確的是( 。
A.①②B.①③C.①②③D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值為 ;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2的圖象如圖所示,請將此圖象向右平移1個單位,再向下平移4個單位.
(1)請直接寫出經(jīng)過兩次平移后的函數(shù)解析式;
(2)請求出經(jīng)過兩次平移后的圖象與x軸的交點(diǎn)坐標(biāo),并指出當(dāng)x滿足什么條件時,函數(shù)值小于0?
(3)若A(x1,y1),B(x2,y2)是經(jīng)過兩次平移后所得的函數(shù)圖象上的兩點(diǎn),且x1<x2<0,請比較y1、y2的大小關(guān)系.(直接寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,小黃自駕游去了離家156千米的黃石礦博園,右圖是小黃離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)圖象.
(1)求小黃出發(fā)0.5小時時,離家的距離;
(2)求出AB段的圖象的函數(shù)解析式;
(3)小黃出發(fā)1.5小時時,離目的地還有多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,在平面直角坐標(biāo)系中,二次函數(shù)()交軸于,,在軸上有一點(diǎn),連接.
(1)求二次函數(shù)的表達(dá)式;
(2)點(diǎn)是第二象限內(nèi)的點(diǎn)拋物線上一動點(diǎn)
①求面積最大值并寫出此時點(diǎn)的坐標(biāo);
②若,求此時點(diǎn)坐標(biāo);
(3)連接,點(diǎn)是線段上的動點(diǎn).連接,把線段繞著點(diǎn)順時針旋轉(zhuǎn)至,點(diǎn)是點(diǎn)的對應(yīng)點(diǎn).當(dāng)動點(diǎn)從點(diǎn)運(yùn)動到點(diǎn),則動點(diǎn)所經(jīng)過的路徑長等于______(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是平行四邊形,對角線OB在y軸正半軸上,位于第一象限的點(diǎn)A和第二象限內(nèi)的點(diǎn)C分別在雙曲線和的一支上,分別過點(diǎn)A、C作x軸的垂線,垂足分別為M和N,則有以下的結(jié)論:
①陰影部分的面積為;
②若B點(diǎn)坐標(biāo)為(0,6),A點(diǎn)坐標(biāo)為(2,2),則;
③當(dāng)∠AOC=時,;
④若OABC是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.其中正確的結(jié)論是 ____________(填寫正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AM、BN是⊙O的兩條切線,D、C分別在AM、BN上,DC切⊙O于點(diǎn)E,連接OD、OC、BE、AE,BE與OC相交于點(diǎn)P,AE與OD相交于點(diǎn)Q,已知AD=4,BC=9,以下結(jié)論:
①⊙O的半徑為 ,②OD∥BE ,③PB=, ④tan∠CEP=
其中正確結(jié)論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com