【題目】已知:關(guān)于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
(1)求證:無論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根;
(2)若此方程有兩個(gè)實(shí)數(shù)根x1,x2,且|x1﹣x2|=2,求k的值.
【答案】(1)見解析(2)k=1或k=﹣.
【解析】
試題分析:(1)確定判別式的范圍即可得出結(jié)論;
(2)根據(jù)根與系數(shù)的關(guān)系表示出x1+x2,x1x2,繼而根據(jù)題意得出方程,解出即可.
(1)證明:①當(dāng)k=0時(shí),方程是一元一次方程,有實(shí)數(shù)根;
②當(dāng)k≠0時(shí),方程是一元二次方程,
∵△=(3k﹣1)2﹣4k×2(k﹣1)=(k+1)2≥0,
∴無論k為任何實(shí)數(shù),方程總有實(shí)數(shù)根.
(2)解:∵此方程有兩個(gè)實(shí)數(shù)根x1,x2,
∴x1+x2=,x1x2=,
∵|x1﹣x2|=2,
∴(x1﹣x2)2=4,
∴(x1+x2)2﹣4x1x2=4,即﹣4×=4,
解得:=±2,
即k=1或k=﹣,
經(jīng)檢驗(yàn)k=1或k=﹣是方程的解,
則k=1或k=﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2+2x﹣k=0有實(shí)數(shù)根,則k的取值范圍是( 。
A. k≥﹣1 B. k>﹣1且k≠0 C. k>﹣1 D. k≥﹣1且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點(diǎn)D,連結(jié)AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點(diǎn)C落在點(diǎn)E處,連結(jié)BE,得到四邊形ABED.則BE的長是( )
A.4 B. C.3 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華詩詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的“中國詩詞大會(huì)”海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計(jì)圖表:
抽取的200名學(xué)生海選成績分組表
組別 | 海選成績x |
A組 | 50≤x<60 |
B組 | 60≤x<70 |
C組 | 70≤x<80 |
D組 | 80≤x<90 |
E組 | 90≤x<100 |
請根據(jù)所給信息,解答下列問題:
(1)請把圖1中的條形統(tǒng)計(jì)圖補(bǔ)充完整;(溫馨提示:請畫在答題卷相對(duì)應(yīng)的圖上)
(2)在圖2的扇形統(tǒng)計(jì)圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角θ的度數(shù)為 度;
(3)規(guī)定海選成績在90分以上(包括90分)記為“優(yōu)等”,請估計(jì)該校參加這次海選比賽的2000名學(xué)生中成績“優(yōu)等”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若m=2100 , n=375 , 則m、n的大小關(guān)系正確的是( )
A.m>n
B.m<n
C.相等
D.大小關(guān)系無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a是最小的自然數(shù),b是最大的負(fù)整數(shù),c是倒數(shù)等于它本身的數(shù),則a+b+c=( )
A. 0 B. -2 C. 0或-2 D. -1或1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com