【題目】若一個四邊形的一條對角線把四邊形分成兩個等腰三角形,我們把這條對角線叫這個四邊形的和諧線,這個四邊形叫做和諧四邊形.如菱形就是和諧四邊形.
(1)如圖1,在梯形ABCD中,AD∥BC,∠ABC=60°,∠C=75°,BD平分∠ABC.求證:BD是梯形ABCD的和諧線;
(2)如圖2,在12×16的網(wǎng)格圖上(每個小正方形的邊長為1)有一個扇形BAC,點A.B.C均在格點上,請在給出的網(wǎng)格圖上找一個點D,使得以A、B、C、D為頂點的四邊形的兩條對角線都是和諧線,并畫出相應(yīng)的和諧四邊形;
(3)四邊形ABCD中,AB=AD=BC,∠BAD=90°,AC是四邊形ABCD的和諧線,求∠BCD的度數(shù).
【答案】(1)證明見解析;(2)作圖見解析;(3)135°,90°或45°.
【解析】試題分析:(1)要證明BD是四邊形ABCD的和諧線,只需要證明△ABD和△BDC是等腰三角形就可以;
(2)根據(jù)扇形的性質(zhì)弧上的點到頂點的距離相等,只要D在中點時構(gòu)成的四邊形ABDC就是和諧四邊形;連接BC,在△BAC外作一個以AC為腰的等腰三角形ACD,構(gòu)成的四邊形ABCD就是和諧四邊形,
(3)由AC是四邊形ABCD的和諧線,可以得出△ACD是等腰三角形,從圖4,圖5,圖6三種情況運(yùn)用等邊三角形的性質(zhì),正方形的性質(zhì)和30°的直角三角形性質(zhì)就可以求出∠BCD的度數(shù).
試題解析:(1)∵AD∥BC,
∴∠ABC+∠BAD=180°,∠ADB=∠DBC.
∵∠BAD=120°,
∴∠ABC=60°.
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠ABD=∠ADB,
∴△ADB是等腰三角形.
在△BCD中,∠C=75°,∠DBC=30°,
∴∠BDC=∠C=75°,
∴△BCD為等腰三角形,
∴BD是梯形ABCD的和諧線;
(2)由題意作圖為:圖2,圖3
(3)∵AC是四邊形ABCD的和諧線,
∴△ACD是等腰三角形.
∵AB=AD=BC,
如圖4,當(dāng)AD=AC時,
∴AB=AC=BC,∠ACD=∠ADC
∴△ABC是正三角形,
∴∠BAC=∠BCA=60°.
∵∠BAD=90°,
∴∠CAD=30°,
∴∠ACD=∠ADC=75°,
∴∠BCD=60°+75°=135°.
如圖5,當(dāng)AD=CD時,
∴AB=AD=BC=CD.
∵∠BAD=90°,
∴四邊形ABCD是正方形,
∴∠BCD=90°
如圖6,當(dāng)AC=CD時,過點C作CE⊥AD于E,過點B作BF⊥CE于F,
∵AC=CD.CE⊥AD,
∴AE=AD,∠ACE=∠DCE.
∵∠BAD=∠AEF=∠BFE=90°,
∴四邊形ABFE是矩形.
∴BF=AE.
∵AB=AD=BC,
∴BF=BC,
∴∠BCF=30°.
∵AB=BC,
∴∠ACB=∠BAC.
∵AB∥CE,
∴∠BAC=∠ACE,
∴∠ACB=∠ACE=∠BCF=15°,
∴∠BCD=15°×3=45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列的計算中,正確的是( 。
A. m3+m2=m5 B. m5÷m2=m3 C. (2m)3=6m3 D. (m+1)2=m2+1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列式子滿足完全平方公式的是()
A. (3x﹣y)(﹣y﹣3x)B. (3x﹣y)(3x+y)
C. (﹣3x﹣y)(y﹣3x)D. (﹣3x﹣y)(y+3x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面調(diào)查中,適合采用普查的是( )
A.調(diào)查全國中學(xué)生心理健康現(xiàn)狀
B.調(diào)查你所在的班級同學(xué)的身高情況
C.調(diào)查我市食品合格情況
D.調(diào)查南京市電視臺《今日生活》收視率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國最新研制的巨型計算機(jī)“曙光3000超級服務(wù)器”,它的運(yùn)算峰值可以達(dá)到每秒403200000000次,403200000000用科學(xué)記數(shù)法來表示為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com