【題目】在平面直角坐標(biāo)系中,直線AB分別交x軸,y軸于A(a,0),B(0,b),且滿足a2+b2+4a﹣8b+20=0.
(1)求a,b的值;
(2)點(diǎn)P在直線AB的右側(cè);且∠APB=45°,
①若點(diǎn)P在x軸上(圖1),則點(diǎn)P的坐標(biāo)為 ;
②若△ABP為直角三角形,求P點(diǎn)的坐標(biāo).
【答案】(1)a=﹣2,b=4;(2)①(4,0);②P點(diǎn)坐標(biāo)為(4,2),(2,﹣2).
【解析】
(1)利用非負(fù)數(shù)的性質(zhì)解決問(wèn)題即可.
(2)①根據(jù)等腰直角三角形的性質(zhì)即可解決問(wèn)題.
②分兩種情形:如圖2中,若∠ABP=90°,過(guò)點(diǎn)P作PC⊥OB,垂足為C.如圖3中,若∠BAP=90°,過(guò)點(diǎn)P作PD⊥OA,垂足為D.分別利用全等三角形的性質(zhì)解決問(wèn)題即可.
(1)∵a2+4a+4+b2﹣8b+16=0
∴(a+2)2+(b﹣4)2=0
∴a=﹣2,b=4.
(2)①如圖1中,
∵∠APB=45°,∠POB=90°,
∴OP=OB=4,
∴P(4,0).
故答案為(4,0).
②∵a=﹣2,b=4
∴OA=2OB=4
又∵△ABP為直角三角形,∠APB=45°
∴只有兩種情況,∠ABP=90°或∠BAP=90°
①如圖2中,若∠ABP=90°,過(guò)點(diǎn)P作PC⊥OB,垂足為C.
∴∠PCB=∠BOA=90°,
又∵∠APB=45°,
∴∠BAP=∠APB=45°,
∴BA=BP,
又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,
∴∠ABO=∠BPC,
∴△ABO≌△BPC(AAS),
∴PC=OB=4,BC=OA=2,
∴OC=OB﹣BC=4﹣2=2,
∴P(4,2).
②如圖3中,若∠BAP=90°,過(guò)點(diǎn)P作PD⊥OA,垂足為D.
∴∠PDA=∠AOB=90°,
又∵∠APB=45°,
∴∠ABP=∠APB=45°,
∴AP=AB,
又∵∠BAD+∠DAP=90°,
∠DPA+∠DAP=90°,
∴∠BAD=∠DPA,
∴△BAO≌△APP(AAS),
∴PD=OA=2,AD=OB=4,
∴OD=AD﹣0A=4﹣2=2,
∴P(2,﹣2).
綜上述,P點(diǎn)坐標(biāo)為(4,2),(2,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是關(guān)于x的一次函數(shù),下表列出了這個(gè)函數(shù)部分的對(duì)應(yīng)值:
(1)求這個(gè)一次函數(shù)的表達(dá)式.
(2)求m,n的值.
(3)已知點(diǎn)和點(diǎn)在該一次函數(shù)圖象上,設(shè),判斷正比例函數(shù)的圖象是否有可能經(jīng)過(guò)第一象限,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC 中,AB=AC,點(diǎn) D 在 AB 邊上,點(diǎn) E 在 AC 的延長(zhǎng)線上,且 CE=BD, 連接 DE 交 BC 于點(diǎn) F.
⑴求證:EF=DF;
⑵如圖2,過(guò)點(diǎn) D 作 DG⊥BC,垂足為 G,求證:BC=2FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一面與地面垂直的圍墻的同側(cè)有一根高10米的旗桿AB和一根高度未知的電線桿CD,它們都與地面垂直,為了測(cè)得電線桿的高度,一個(gè)小組的同學(xué)進(jìn)行了如下測(cè)量:某一時(shí)刻,在太陽(yáng)光照射下,旗桿落在圍墻上的影子EF的長(zhǎng)度為2米,落在地面上的影子BF的長(zhǎng)為10米,而電線桿落在圍墻上的影子GH的長(zhǎng)度為3米,落在地面上的影子DH的長(zhǎng)為5米,依據(jù)這些數(shù)據(jù),該小組的同學(xué)計(jì)算出了電線桿的高度.
(1)該小組的同學(xué)在這里利用的是 投影的有關(guān)知識(shí)進(jìn)行計(jì)算的;
(2)試計(jì)算出電線桿的高度,并寫出計(jì)算的過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)甲、乙兩種商品,已知每件甲種商品的價(jià)格比每件乙種商品的價(jià)格貴5元,用360元購(gòu)買甲種商品的件數(shù)恰好與用300元購(gòu)買乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品每件的價(jià)格各是多少元?
(2)若商店計(jì)劃購(gòu)買這兩種商品共40件,且投入的經(jīng)費(fèi)不超過(guò)1150元,那么,最多可購(gòu)買多少件甲種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,AD∥BC,AC與BD相交于點(diǎn)O,則圖中全等三角形共有( 。
A.2對(duì)B.4對(duì)C.6對(duì)D.8對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC,CD上分別找一點(diǎn)M,N,使△AMN周長(zhǎng)最小,請(qǐng)?jiān)趫D中畫(huà)出△AMN,寫出畫(huà)圖過(guò)程并直接寫出∠MAN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號(hào).已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測(cè)點(diǎn)D,測(cè)得船C正好在觀測(cè)點(diǎn)D的南偏東75°方向上.
(1)分別求出A與C,A與D間的距離AC和AD(如果運(yùn)算結(jié)果有根號(hào),請(qǐng)保留根號(hào)).
(2)已知距離觀測(cè)點(diǎn)D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線AC去營(yíng)救船C,在去營(yíng)救的途中有無(wú)觸礁的危險(xiǎn)?(參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是的直徑,是的弦,弦于點(diǎn),交于點(diǎn),過(guò)點(diǎn)的直線與的延長(zhǎng)線交于點(diǎn),.
求證:是的切線;
當(dāng)點(diǎn)在劣弧上運(yùn)動(dòng)時(shí),其他條件不變,若.求證:點(diǎn)是的中點(diǎn);
在滿足的條件下,,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com