【題目】甲乙兩人在相同條件下完成了10次射擊訓(xùn)練,兩人的成績(jī)?nèi)鐖D所示。
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 方差/環(huán) | |
甲 | ______ | 7 | 1.2 |
乙 | 7 | ______ | ______ |
(1)完成表格;
(2)根據(jù)訓(xùn)練成績(jī),你認(rèn)為選派哪一名隊(duì)員參賽更好?為什么?
【答案】(1)7,7.5,5.4;(2)甲,因?yàn)榧滓覂扇似骄煽?jī)一樣,甲射擊成績(jī)的方差小于乙,所以甲的成績(jī)更加穩(wěn)定,所以選擇甲去參賽。
【解析】
(1)利用加權(quán)平均數(shù)的計(jì)算方法求甲的平均成績(jī);將乙的成績(jī)從小到大排列后取第5個(gè)和第6個(gè)成績(jī)的平均數(shù)求得乙的中位數(shù);利用方差的計(jì)算公式求乙的方差;(2)利用方差的穩(wěn)定性進(jìn)行判斷.
解:(1)甲的平均成績(jī)?yōu)椋?/span>(環(huán)),
乙成績(jī)的中位數(shù)為:,
乙成績(jī)的方差為:,
故答案為:7;7.5;5.4;
(2)我選擇甲去參賽.因?yàn)榧滓覂扇似骄煽?jī)一樣,甲射擊成績(jī)的方差小于乙,所以甲的成績(jī)更加穩(wěn)定,所以選擇甲去參賽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別是BC邊,CD邊的中點(diǎn),AE、AF分別交BD于點(diǎn)G,H,設(shè)△AGH的面積為S1,平行四邊形ABCD的面積為S2,則S1:S2的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過(guò)O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.
(1)求證:OFDE=OE2OH;
(2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,數(shù)學(xué)老師請(qǐng)數(shù)學(xué)興趣小組的同學(xué)就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì).如圖甲乙是數(shù)學(xué)興趣小組的同學(xué)們通過(guò)手機(jī)和整理數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中提供的信息,解答一下的問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,計(jì)算出“步行”部分所應(yīng)對(duì)的圓心角的度數(shù).
(2)請(qǐng)問(wèn)該班共有多少名學(xué)生?
(3)在圖中將表示“乘車(chē)”的部分補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BF和CE分別是鈍角△ABC(∠ABC是鈍角)中AC、AB邊上的中線(xiàn),又BF⊥CE,垂足是G,過(guò)點(diǎn)G作GH⊥BC,垂足為H.
(1)求證:GH2=BHCH;
(2)若BC=20,并且點(diǎn)G到BC的距離是6,則AB的長(zhǎng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“新中梁山隧道”于2017年11月21日開(kāi)放通行,原中梁山隧道將封閉升級(jí),擴(kuò)容改造工程預(yù)計(jì)2018年3月全部完工,屆時(shí)將實(shí)現(xiàn)雙向8車(chē)道通行,隧道通行能力將增加一倍,沿線(xiàn)交通擁堵?tīng)顩r將有所緩解.圖中線(xiàn)段AB表示該工程的部分隧道.無(wú)人勘測(cè)機(jī)從隧道側(cè)的A點(diǎn)出發(fā)時(shí),測(cè)得C點(diǎn)正上方的E點(diǎn)的仰角為45°,無(wú)人機(jī)飛行到E點(diǎn)后,沿著坡度i=1:3的路線(xiàn)EB飛行,飛行到D點(diǎn)正上方的F點(diǎn)時(shí),測(cè)得A點(diǎn)的俯角為12°,其中EC=100米,A、B、C、D、E、F在同一平面內(nèi),則隧道AD段的長(zhǎng)度約為( 。┟祝▍⒖紨(shù)據(jù):tan12°≈0.2,cosl2°≈0.98)
A. 200 B. 250 C. 300 D. 540
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或化簡(jiǎn):
(1)sin45°cos60°﹣cos45°sin30°;
(2)5tan30°﹣2(cos60°﹣sin60°);
(3)(tan30°)2005(2sin45°)2004;
(4)(2cos45°﹣tan45°)﹣(tan60°+sin30°)0﹣(2sin45°﹣1)﹣1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結(jié)論:
①∠CAD=30°②BD=③S平行四邊形ABCD=ABAC④OE=AD⑤S△APO=,正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折疊圓心為、半徑為的圓形紙片,使圓周上的某一點(diǎn)與圓心重合.對(duì)圓周上的每一點(diǎn),都這樣折疊紙片,從而都有一條折痕.那么,所有折痕所在直線(xiàn)上點(diǎn)的全體為( )
A. 以為圓心、半徑為的圓周 B. 以為圓心、半徑為的圓周
C. 以為圓心、半徑為的圓內(nèi)部分 D. 以為圓心、半徑為的圓周及圓外部分
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com