【題目】如圖,在ABCD中,AB=4,BC=6,∠ABC=60°,點P為ABCD內一點,點Q在BC邊上,則PA+PD+PQ的最小值為( )
A.B.6+2C.5D.10
【答案】C
【解析】
如下圖,將△APD繞點A逆時針旋轉60°至△AFE處,通過邊長轉換,可將PA+PD+PQ轉化為PF+EF+PQ的形式,再利根據兩點之間線段最短,得出最小值.
如下圖,將△APD繞點A逆時針旋轉60°至△AFE處,連接FP,過點E作BC的垂線,交BC于點G,AD于點H,過點A作BC的垂線,交BC于點K
∵△AFE是△APD繞點A逆時針旋轉60°得到
∴∠FAP=60°,∠EAD=60°,AF=AP,EF=PD
∴△APF是等邊三角形,∴AP=PF
∴PA+PD+PQ=PF+FE+PQ≥EG
∵四邊形ABCD是平行四邊形,BC=6
∴AE=AD=BC=6,AD∥BC
∴在Rt△AHE中,AH=3,EH=3
∵HG⊥BC,AK⊥BC,AD∥BC
∴AK⊥AD,GH⊥AD,∴AK=HG
∵∠ABC=60°,AB=4
∴在Rt△ABK中,BK=2,AK=2
∴HG=2
∴EG=3
故選:C
科目:初中數學 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校八年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).請根據圖表信息解答以下問題:
(1)本次調查一共隨機抽取了個參賽學生的成績;
(2)表1中a= ;
(3)所抽取的參賽學生的成績的中位數落在的“組別”是 ;
(4)請你估計,該校九年級競賽成績達到90分以上(含90分)的學生約有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD∥EF,CD交AF于G,
(1)如圖1,若CF平分∠AFE,∠A=70°,求∠C;
(2)如圖2,請寫出∠A,∠C和∠AFC的數量關系并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】近年來,青少年中的近視眼和肥胖案例日趨增多,人們普遍意識到健康的身體是學習的保障,所以體育活動越來越受重視.某商店分兩次購進跳繩和足球兩種商品進行銷售,每次購進同一種商品的進價相同,具體情況如下表所示.
購進數量(件) | 購進所需費用(元) | ||
跳繩 | 足球 | ||
第一次 | 30 | 40 | 3800 |
第二次 | 40 | 30 | 3200 |
(1)跳繩和足球兩種商品每件的進價分別是多少元?
(2)商店計劃用5300元的資金進行第三次進貨,共購進跳繩和足球兩種商品100件,其中要求足球的數量不少于跳繩的數量,有哪幾種進貨方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程x2+(2m+1)x+m2-4=0.
(1)當m為何值時,方程有兩個不相等的實數根?
(2)若邊長為5的菱形的兩條對角線的長分別為方程兩根的2倍,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD中,M、N分別為AB和CD的中點.
(1)求證:四邊形AMCN是平行四邊形;
(2)當AC、BC滿足怎樣的數量關系時,四邊形AMCN是矩形,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小瑩用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,BC為10cm.當小瑩折疊時,頂點D落在BC邊上的點F處(折痕為AE).
求(1)BF的長;
(2)EF的長 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com