【題目】已知,如圖,菱形ABCD中,EF分別是CD、CB上的點(diǎn),且CECF

(1)求證:△ABE≌△ADF

(2)若菱形ABCD中,AB4,∠C120°,∠EAF60°,求菱形ABCD的面積.

【答案】1)見解析;(2.

【解析】

1)根據(jù)SAS即可判斷出ABE≌△ADF

2)連接AC,則可將菱形分成兩個(gè)全等的等邊三角形,從而根據(jù)AB4可求出面積.

證明:(1)∵四邊形ABCD是菱形,

ABAD,BCCD,∠B=∠D,

CECF,

BEDF

ABEADF中,

∴△ABE≌△ADFSAS

2)連接AC

∵∠C120°,

∴可得ABCACD為兩個(gè)全等的等邊三角形,

又∵AB4,

S菱形ABCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)(k≠0)與二次函數(shù)y=2x2+kx-k的圖象可能是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AB8,BC6P是線段BC上一點(diǎn)(P不與B重合),MDB上一點(diǎn),且BPDM,設(shè)BPxMBP的面積為y,則yx之間的函數(shù)關(guān)系式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角AC上,以OA長為半徑的⊙O與ADAC分別交于點(diǎn)E、F,且.

1)求證:CE是⊙O的切線.

2)若tanACB=,AE=8,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°BCAC,點(diǎn) D AB 上,DEAB BC E,點(diǎn) F AE 的中點(diǎn)

1 寫出線段 FD 與線段 FC 的關(guān)系并證明;

2 如圖 2,將BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)αα90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;

3 BDE 繞點(diǎn) B 逆時(shí)針旋轉(zhuǎn)一周,如果 BC4,BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABD是O的內(nèi)接三角形,E是弦BD的中點(diǎn),點(diǎn)C是O外一點(diǎn)且∠DBC=∠A,連接OE延長與圓相交于點(diǎn)F,與BC相交于點(diǎn)C.

(1)求證:BC是O的切線;

(2)若O的半徑為6,BC=8,求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖 1,B、D 分別是 x 軸和 y 軸的正半軸上的點(diǎn),ADx ,ABy (AD>AB),點(diǎn) P C 點(diǎn)出發(fā),以 3cm/s 的速度沿 CDAB 勻速運(yùn)動(dòng),運(yùn)動(dòng)到 B 點(diǎn)時(shí)終止;點(diǎn) Q B 點(diǎn)出發(fā),以 2cm/s 的速度,沿 BCD 勻速運(yùn)動(dòng),運(yùn)動(dòng)到 D 點(diǎn)時(shí)終止.PQ 兩點(diǎn)同時(shí)出發(fā), 設(shè)運(yùn)動(dòng)的時(shí)間為 t(s),PCQ 的面積為 S(cm2),S t 之間的函數(shù)關(guān)系由圖 2 中的曲線段 OE,線段 EF、FG 表示.

(1) AD 點(diǎn)的坐標(biāo);

(2)求圖2中線段FG的函數(shù)關(guān)系式;

(3)是否存在這樣的時(shí)間 t,使得PCQ 為等腰三角形?若存在,直接寫出 t 的值;若不存在, 請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等邊三角形,以邊BC為直徑的半圓與邊AB,AC分別交于D,F兩點(diǎn),過點(diǎn)DDE⊥AC,垂足為點(diǎn)E

1)判斷DE⊙O的位置關(guān)系,并證明你的結(jié)論;

2)過點(diǎn)FFH⊥BC,垂足為點(diǎn)H,若AB=4,求FH的長(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行是我們倡導(dǎo)的一種生活方式,某校為了解學(xué)生對(duì)共享單車的使用情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將這次調(diào)查的結(jié)果繪制了以下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)所給信息,解答下列問題:

1m   

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)這次調(diào)查結(jié)果的眾數(shù)是   

4)已知全校共3000名學(xué)生,請(qǐng)估計(jì)經(jīng)常使用共享單車的學(xué)生大約有多少名?

查看答案和解析>>

同步練習(xí)冊(cè)答案