【題目】定義:若一次函數(shù)y=ax+b和反比例函數(shù)y=-滿足a+c=2b,則稱為y=ax2+bx+c為一次函數(shù)和反比例函數(shù)的“等差”函數(shù).

1)判斷y=x+by=-是否存在“等差”函數(shù)?若存在,寫出它們的“等差”函數(shù);

2)若y=5x+by=-存在“等差”函數(shù),且“等差”函數(shù)的圖象與y=-的圖象的一個(gè)交點(diǎn)的橫坐標(biāo)為1,求一次函數(shù)和反比例函數(shù)的表達(dá)式;

3)若一次函數(shù)y=ax+b和反比例函數(shù)y=-(其中a0,c0a=b)存在“等差”函數(shù),且y=ax+b與“等差”函數(shù)有兩個(gè)交點(diǎn)Ax1y1)、Bx2,y2),試判斷“等差”函數(shù)圖象上是否存在一點(diǎn)Px,y)(其中x1xx2),使得ABP的面積最大?若存在,用c表示ABP的面積的最大值;若不存在,請(qǐng)說明理由.

【答案】(1) ;(2);(3)見解析.

【解析】

1)根據(jù)等差函數(shù)的定義,可知,,列方程求出b的值即可;

2)根據(jù)等差函數(shù)的定義可得,,由此可列出等差函數(shù)的解析式和反比例函數(shù)的解析式,當(dāng)時(shí)聯(lián)立兩函數(shù)解析式可求出,問題得解;

3)根據(jù)等差函數(shù)的定義用c表示出ab,然后得到等差函數(shù)的解析式與一次函數(shù)解析式,求出的值,過點(diǎn)P,ABH,求出,然后根據(jù)三角形面積公式和二次函數(shù)的最值求解.

解:(1)存在.
假設(shè)一次函數(shù)與反比例函數(shù)存在等差函數(shù),

,
解得:
存在等差函數(shù),其解析式為;
(2)根據(jù)題意知:,


等差函數(shù)的解析式為,

反比例函數(shù)的解析式為
根據(jù)題意,代入,

:,解得,
故一次函數(shù)的解析式為,反比例函數(shù)的解析式為;
(3)存在.
根據(jù)題意知:

,
等差函數(shù)的解析式為,一次函數(shù)解析式為

等差函數(shù)有兩個(gè)交點(diǎn)

如圖,過點(diǎn)P,ABH,

點(diǎn)點(diǎn)在,之間


當(dāng)時(shí),S取得最大值,最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,A、B兩點(diǎn)的縱坐標(biāo)分別為3,1,反比例函數(shù)y的圖象經(jīng)過A,B兩點(diǎn),則點(diǎn)D的坐標(biāo)為( )

A. (21,3)B. (2+13)

C. (21,3)D. (2+13)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣.英國(guó)佩里加(HPerigal18011898)用“水車翼輪法”(圖1)證明了勾股定理.該證法是用線段QX,ST,將正方形BIJC分割成四個(gè)全等的四邊形,再將這四個(gè)四邊形和正方形ACYZ拼成大正方形AEFB(圖2).若ADtanAON,則正方形MNUV的周長(zhǎng)為(  )

A. B. 18C. 16D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知、By軸上的動(dòng)點(diǎn),以AB為邊構(gòu)造,使點(diǎn)Cx軸上,BC的中點(diǎn),則PM的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖,分析下列四個(gè)結(jié)論:①abc0;②b2-4ac0;③a+b+c0;④a-b+c0.其中正確的結(jié)論有(  )

A. 1個(gè)

B. 2個(gè)

C. 3個(gè)

D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點(diǎn),連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“全民讀書月”活動(dòng)中,小明調(diào)查了班級(jí)里40名同學(xué)本學(xué)期購(gòu)買課外書的費(fèi)用情況,并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:(直接填寫結(jié)果)

費(fèi)用()

20

30

50

80

100

人數(shù)

6

a

10

b

4

(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是   元,中位數(shù)是   元;

(2)扇形統(tǒng)計(jì)圖中,“50元”所對(duì)應(yīng)的圓心角的度數(shù)為   度,該班學(xué)生購(gòu)買課外書的平均費(fèi)用為   元;

(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計(jì)本學(xué)期購(gòu)買課外書花費(fèi)50元的學(xué)生有   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=4,A=60°,若邊AC的垂直平分線DEAB于點(diǎn)D,連接CD,則△BDC的周長(zhǎng)為( 。

A. 8 B. 9 C. 5+ D. 5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是小明制作的一副弓箭,點(diǎn)A,D分別是弓臂BAC與弓弦BC的中點(diǎn),弓弦BC=60cm.沿AD方向拉動(dòng)弓弦的過程中,假設(shè)弓臂BAC始終保持圓弧形,弓弦不伸長(zhǎng).如圖2,當(dāng)弓箭從自然狀態(tài)的點(diǎn)D拉到點(diǎn)D1時(shí),有AD1=30cm,∠B1D1C1=120°.

(1)圖2中,弓臂兩端B1,C1的距離為______cm.

(2)如圖3,將弓箭繼續(xù)拉到點(diǎn)D2,使弓臂B2AC2為半圓,則D1D2的長(zhǎng)為____cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案