如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于,兩點(diǎn). C為二次函數(shù)圖象的頂點(diǎn).

(1)求二次函數(shù)的解析式;
(2)定義函數(shù)f:“當(dāng)自變量x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1或y2,若y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;若y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).” 當(dāng)直線(k >0)與函數(shù)f的圖象只有兩個(gè)交點(diǎn)時(shí),求的值.

(1)y=x2-2x+1;(2)k=1,,

解析試題分析:(1)根據(jù)題意設(shè)拋物線的解析式為y=a(x-1)2,把A(0,1)代入求出a的值即可.
(2)根據(jù)題意可知直線(k >0)與函數(shù)f的圖象只有兩個(gè)交點(diǎn)共有三種情況:①直線與直線AB:y=x+1平行,②直線過點(diǎn)B(3,4),③直線與二次函數(shù)y=x2-2x+1的圖象只有一個(gè)交點(diǎn),分別求出k的值即可.
試題解析:(1)設(shè)拋物線解析式為y=a(x-1)2,,
由拋物線過點(diǎn)A(0,1),可得y=x2-2x+1
(2)可得B(3,4)
直線(k >0)與函數(shù)f的圖象只有兩個(gè)交點(diǎn)共有三種情況:
①直線與直線AB:y=x+1平行,此時(shí)k=1;
②直線過點(diǎn)B(3,4),此時(shí);
③直線與二次函數(shù)y=x2-2x+1的圖象只有一個(gè)交點(diǎn),
此時(shí)有  得,
由△=0可得,.
綜上:k=1,,
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某服裝經(jīng)營部每天的固定費(fèi)用為300元,現(xiàn)試銷一種成本為每件80元的服裝.規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于35%.經(jīng)試銷發(fā)現(xiàn),每件銷售單價(jià)相對(duì)成本提高x(元)(x為整數(shù))與日均銷售量y(件)之間的關(guān)系符合一次函數(shù)y=kx+b,且當(dāng)x=10時(shí),y=100;x=20時(shí),y=80.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)設(shè)該服裝經(jīng)營部日均獲得毛利潤為W元(毛利潤=銷售收入-成本-固定費(fèi)用),求W關(guān)于x的函數(shù)關(guān)系式;并求當(dāng)銷售單價(jià)定為多少元時(shí),日均毛利潤最大,最大日均毛利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)y=a(x-m)2-2a(x-m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),當(dāng)△ABC是等腰直角三角形時(shí),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若花園的BC邊長為x米,花園的面積為y(m2

(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達(dá)到200m2嗎?若能,求出此時(shí)x的值;若不能,說明理由;
(3)請(qǐng)結(jié)合題意,判斷當(dāng)x取何值時(shí),花園的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在2014年“元旦”前夕,某商場(chǎng)試銷一種成本為30元的文化衫,經(jīng)試銷發(fā)現(xiàn),若每件按34元的價(jià)格銷售,每天能賣出36件;若每件按39元的價(jià)格銷售,每天能賣出21件.假定每天銷售件數(shù)y(件)是銷售價(jià)格x(元)的一次函數(shù).
(1)直接寫出y與x之間的函數(shù)關(guān)系式y(tǒng)=                      
(2)在不積壓且不考慮其他因素的情況下,每件的銷售價(jià)格定為多少元時(shí),才能使每天獲得的利潤P最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:已知二次函數(shù)的圖象對(duì)稱軸為,且過點(diǎn)B(-1,0).求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某賓館有50個(gè)房間供游客住宿,當(dāng)每個(gè)房間的房?jī)r(jià)為每天180元時(shí),房間會(huì)全部住滿.當(dāng)每個(gè)房間每天的房?jī)r(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑.賓館需對(duì)游客居住的每個(gè)房間每天支出20元的各種費(fèi)用.根據(jù)規(guī)定,每個(gè)房間每天的房?jī)r(jià)不得高于340元.設(shè)每個(gè)房間的房?jī)r(jià)每天增加x元(x為10的整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個(gè)房間時(shí),賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實(shí)國務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長方體形狀的包裝盒(A、B、C、D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn))。已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?S最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案