【題目】如圖,AB是⊙O的直徑,平行四邊形ACDE的一邊在直徑AB上,點E在⊙O上.

1)如圖1,當(dāng)點D在⊙O上時,請你僅用無刻度的直尺在AB上取點P,使DPABP;

2)如圖2,當(dāng)點D在⊙O內(nèi)時,請你僅用無刻度的直尺在AB上取點Q,使EQABQ

【答案】(1)詳見解析;(2)詳見解析.

【解析】

1)如圖1中,連接EO,延長EO交⊙O于點F,連接DFAB于點P,因為EF是⊙O直徑,所以∠EDF=90°,利用平行線的性質(zhì),可知DPAB
2)如圖2中,延長ED交⊙OM,作直徑MF,連接EFOA于點Q,所以∠MEF=90°,利用平行線的性質(zhì),可知EQAB

解:(1)如圖1,連接EO,延長EO交⊙O于點F,連接DFAB于點P,點P即為所求;

2)如圖2,延長ED交⊙OM,作直徑MF,連接EFOA于點Q,點Q即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P是正方形ABCDAB上一點(不與A,B重合),連接PD并將線段PD繞點P順時針旋轉(zhuǎn)90°,得到線段PE,連接BE,則∠CBE等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,點A在以BC為直徑的半圓內(nèi).請僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).

1)在圖1中作弦EF,使EFBC

2)在圖2中作出圓心O

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.

(1)請直接寫出D點的坐標(biāo).

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作ADBC,與ABC的平分線交于點D,BD與AC交于點E,與O交于點F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,已知O是坐標(biāo)原點,B、C兩點的坐標(biāo)分別為(3,-1)、(2,1)。

(1)以O(shè)點為位似中心在y軸的左側(cè)將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點的對應(yīng)點B、C的坐標(biāo);

(3)如果OBC內(nèi)部一點M的坐標(biāo)為(x,y),寫出M的對應(yīng)點M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平行四邊形中,點邊上,且,交于點

1)如果,,那么請用、來表示

2)在原圖中求作向量、方向上的分向量;(不要求寫作法,但要指出所作圖中表示結(jié)論的向量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四張完全相同的卡片上,分別畫有圓、正方形、等邊三角形和線段,現(xiàn)從中隨機抽取兩張,卡片上畫的恰好都是中心對稱圖形的概率為( 。

A.1B.C.D.

查看答案和解析>>

同步練習(xí)冊答案