【題目】如圖,直線y=x﹣4與x軸交于點A,以OA為斜邊在x軸上方作等腰Rt△OAB,并將Rt△AOB沿x軸向右平移,當點B落在直線y=x﹣4上時,Rt△OAB掃過的面積是__.
【答案】8.
【解析】
根據(jù)等腰直角三角形的性質(zhì)求得點BC、OC的長度,即點B的縱坐標,表示出B′的坐標,代入函數(shù)解析式,即可求出平移的距離,進而根據(jù)平行四邊形的面積公式即可求得.
解:y=x-4,
當y=0時,x-4=0,
解得:x=4,
即OA=4,
過B作BC⊥OA于C,
∵△OAB是以OA為斜邊的等腰直角三角形,
∴BC=OC=AC=2,
即B點的坐標是(2,2),
設平移的距離為a,
則B點的對稱點B′的坐標為(a+2,2),
代入y=x-4得:2=(a+2)-4,
解得:a=4,
即△OAB平移的距離是4,
∴Rt△OAB掃過的面積為:4×2=8,
故答案為:8.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中點的坐標為(1,0),過點作x軸的垂線交直線y=2x于,過點作直線y=2x的垂線交x軸于,過點作x軸的垂線交直線y=2x于…,依此規(guī)律,則的坐標為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】勾股定理是人類最偉大的十個科學發(fā)現(xiàn)之一,西方國家稱之為畢達哥拉斯定理,但遠在畢達哥拉斯出生之前,這一定理早已被人們所利用,世界上各個文明古國都對勾股定理的發(fā)現(xiàn)和研究作出過貢獻(希臘、中國、埃及、巴比倫、印度等),特別是定理的證明,據(jù)說有400余種方法.其中在《幾何原本》中有一種證明勾股定理的方法:如圖所示,作CG⊥FH,垂足為G,交AB于點P,延長FA交DE于點S,然后將正方形ACED、正方形BCNM作等面積變形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,這樣就可以完成勾股定理的證明.對于該證明過程,下列結論錯誤的是( )
A. △ADS≌△ACB B. SACQS=S矩形APGF
C. SCBTQ=S矩形PBHG D. SE=BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從城出發(fā)勻速行駛至城在個行駛過程中甲乙兩車離開城的距離(單位:千米)與甲車行駛的時間(單位:小時)之間的函數(shù)關系如圖所示.則下列結論: ①兩城相距千米;②乙車比甲車晚出發(fā)小時,卻早到小時;③乙車出發(fā)后小時追上甲車;④在乙車行駛過程中.當甲、乙兩車相距千米時,或,其中正確的結論是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、B、C是直線l上的三個點,線段AB=8厘米.
(1)若AB=2BC,求線段AC的長度;
(2)若點C是線段AB的中點,點P、Q是直線l上的兩個動點,點P的速度為1厘米/秒,點Q的速度為2厘米/秒.點P、Q分別從點C、B同時出發(fā)在直線上運動,則經(jīng)過多少秒時線段PQ的長為5厘來?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下是八(1)班學生身高的統(tǒng)計表和扇形統(tǒng)計圖,請回答以下問題:
(1)求出統(tǒng)計表和統(tǒng)計圖缺的數(shù)據(jù).
(2)八(1)班學生身高這組數(shù)據(jù)的中位數(shù)落在第幾組?
(3)如果現(xiàn)在八(1)班學生的平均身高是1.63m,已確定新學期班級轉(zhuǎn)來兩名新同學,新同學的身高分別是1.54m和1.77m,那么這組新數(shù)據(jù)的中位數(shù)落在第幾組?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,點E是BC上一點,且tan∠BAE=,點F是CD的中點,連接AE、BF將△ABE著點E按順時針方向旋轉(zhuǎn),使點B落在BF上的B1處位置處,點A經(jīng)過旋轉(zhuǎn)落在A1點位置處,連接AA1交BF于點N.
(1)求證:∠BFC=∠A1 B1F;
(2)說明點N是AA1的中點;
(3)求AN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從邊長為a的正方形中剪掉一個邊長為b的正方形(如圖1),然后將剩余部分拼成一個長方形(如圖2).
(1)探究:上述操作能驗證的等式是 ;(請選擇正確的一個)
A.a(chǎn)2-2ab+b2=(a-b)2 B.a(chǎn)2-b2=(a+b)(a-b)
C.a(chǎn)2+ab=a(a+b)
(2)應用:利用你從(1)選出的等式,完成下列各題:
①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;
②計算:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲騎自行年,乙乘坐汽車從A地出發(fā)沿同一路線勻速前往B地,甲先出發(fā).設甲行駛的時間為x(h),甲、乙兩人距出發(fā)點的路程S甲(km)、S乙(km)關于x的函數(shù)圖象如圖1所示,甲、乙兩人之同的距離y(km)關于x的函數(shù)圖象如圖2所示,請你解決以下問題:
(1)甲的速度是__________km/h,乙的速度是_______km/h;
(2)a=_______,b=_______;
(3)甲出發(fā)多少時間后,甲、乙兩人第二次相距7.5km?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com