精英家教網 > 初中數學 > 題目詳情

【題目】某一工程隊,在工程招標時,接到甲、乙兩個工程隊的投標書,施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元. 工程領導小組根據甲、乙兩隊的投標書測算,有如下方案:

1)甲隊單獨完成這項工程剛好如期完成;

2)乙隊單獨完成這項工程要比規(guī)定日期多用6天;

3)若甲、乙兩隊合作3天,余下的工程由乙隊單獨做也正好如期完成;

試問:在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理由.

【答案】在不耽誤工期的情況下,選第三種方案最節(jié)省工程款,理由見詳解.

【解析】

由“甲、乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成”,說明甲隊實際工作了3天,乙隊工作了x天正好完成任務,據此列方程求得規(guī)定日期,然后再計算符合要求的方案所需的費用,比較即可得出結果.

解:設規(guī)定日期為天,

由題意得:,

解得:

經檢驗是原方程的根,

方案(2)不符合要求;

方案(1):(萬元)

方案(3):(萬元)

在不耽誤工期的情況下,選第三種方案最節(jié)省工程款.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一個不透明的口袋里裝有紅、黑、綠三種顏色的乒乓球(除顏色外其余都相同),其中紅球有個,黑球有個,綠球有個,第一次任意摸出一個球(不放回),第二次再摸出一個球,則兩次摸到的都是紅球的概率為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某陶瓷公司招工廣告稱:本公司工人工作時間:每天工作小時,每月工作天;待遇:工人按計件付工資,每月另加生活費元,按月結算…”.該公司只生產甲、乙兩種陶瓷,工人小王記錄了如下一些數據:

甲種陶瓷

(單位:個

乙種陶瓷

(單位:個

總時間

(單位:分鐘)

計件工資

(單位:元)

(1)設生產每個甲種陶瓷所需的時間為分鐘,用含有的代數式表示生產每個乙種陶瓷所需的時間;

(2)設小王工人小王某月(工作天)生產甲種陶瓷個,乙種陶瓷

①試求的函數關系式;(不需寫出自變量的取值范圍)

②根據市場調查,每個工人每月生產甲種陶瓷的數量不少于乙種陶瓷數量的倍,且生產每個乙種陶瓷的計件工資可提高元,甲種陶瓷計件工資也有提高的空間.若小王的工作效率不變,甲種陶瓷計件工資至少要提高多少元,小王的月工資(計件工資+福利工資月工資)才能領到元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】分別以ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當三個等腰直角三角形都在該平行四邊形外部時,連接GF,EF.請判斷GF與EF的關系(只寫結論,不需證明);
(2)如圖2,當三個等腰直角三角形都在該平行四邊形內部時,連接GF,EF,(1)中結論還成立嗎?若成立,給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象如圖所示,有下列四個結論:;②;③;④,其中正確的個數有(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學開展唱紅歌比賽活動,九年級(1)、(2)班根據初賽成績,各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.

1)根據圖示填寫下表;

班級

平均數(分)

中位數(分)

眾數(分)

九(1

85

85


九(2

80



2)結合兩班復賽成績的平均數和中位數,分析哪個班級的復賽成績較好;

3)計算兩班復賽成績的方差.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】平面內的兩條直線有相交和平行兩種位置關系

1)如圖a,若ABCD,點PABCD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+D,得∠BPD=∠B﹣∠D.將點P移到AB、CD內部,如圖b,以上結論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數量關系?請證明你的結論;

2)在圖b中,將直線AB繞點B逆時針方向旋轉一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數量關系?(不需證明)

3)根據(2)的結論求圖d中∠A+B+C+D+E+F的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如(圖1),在平面直角坐標中,A(12,0),B(6,6),點C為線段AB的中點,點D與原點O關于點C對稱.

1)利用直尺和圓規(guī)在(圖1)中作出點D的位置(保留作圖痕跡),判斷四邊形OBDA的形狀,并說明理由;

2)在(圖1)中,動點E從點O出發(fā),以每秒1個單位的速度沿線段OA運動,到達點A時停止;同時,動點F從點O出發(fā),以每秒a個單位的速度沿OB→BD→DA運動,到達點A時停止.設運動的時間為t(秒).

①當t=4時,直線EF恰好平分四邊形OBDA的面積,求a的值;

②當t=5時,CE=CF,請直接寫出a的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系xoyA(﹣46),B(﹣1,2),C(﹣4,1).

1)作出△ABC關于直線x1對稱的圖形△A1B1C1并寫出△A1B1C1各頂點的坐標;

2)將△A1B1C1向左平移2個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標

查看答案和解析>>

同步練習冊答案