【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,經(jīng)過點A作AE⊥OC,垂足為點D,AE與BC交于點F,與過點B的直線交于點E,且EB=EF.
(1)求證:BE是⊙O的切線;
(2)若CD=1,cos∠AEB= ,求BE的長.
【答案】
(1)證明:∵B、C在⊙O上,
∴OB=OC,
∴∠OBC=∠OCB,
∵EF=EB,
∴∠EBC=∠EFB,
又∵∠AFC=∠EFB,
∴∠AFC=∠EBC,
∵AE⊥OC,
∴∠AFC+∠OCB=90°,
∴∠EBC+∠OBC=90°,即BE⊥OB,
又OB是⊙O的半徑,
∴EB是⊙O的切線
(2)解:設⊙O的半徑為r,則OA=OC=r,
又CD=1,
∴OD=r﹣1,
∵∠AOD+∠EAB=90°,∠AEB+∠EAB=90°,
∴∠AOD=∠AEB,
∴cos∠AOD=cos∠AEB= ,
∴在Rt△AOD中,cos∠AOD= = ,即 = ,
解得:r= ,
∵AB是⊙O的直徑,
∴AB=5,
在Rt△AEB中,cos∠AEB= = ,
∴AE= BE,
又AE2=AB2+BE2,即( BE)2=BE2+52,
解得:BE=
【解析】(1)由∠OBC=∠OCB、∠EBC=∠EFB=∠AFC,根據(jù)∠AFC+∠OCB=90°可得∠EBC+∠OBC=90°,即可得證;(2)設⊙O的半徑為r,在Rt△AOD中根據(jù)cos∠AOD=cos∠AEB= 可得r= ,由cos∠AEB= = 知AE= BE,Rt△ABE中,根據(jù)勾股定理有( BE)2=BE2+52 , 解之可得.
【考點精析】掌握垂徑定理和三角形的外接圓與外心是解答本題的根本,需要知道垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。贿^三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人參加學校組織的理化實驗操作測試,近期的5次測試成績?nèi)鐖D所示.
(1)請你根據(jù)圖中的數(shù)據(jù)填寫表格;
姓名 | 平均數(shù) | 眾數(shù) | 方差 |
甲 | 8 | ||
乙 | 8 | 2.8 |
(2)從平均數(shù)和方差相結(jié)合看,誰的成績好些?從發(fā)展趨勢來看,誰的成績好些?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛汽車和一輛摩托車分別從A,B兩地去同一個城市,它們離A地的路程隨時間變化的圖象如圖所示.則下列結(jié)論:①摩托車比汽車晚到1h;②A,B兩地的路程為20km;③摩托車的速度為45km/h,汽車的速度為60km/h;④汽車出發(fā)1小時后與摩托車相遇,此時距B地40千米.其中正確結(jié)論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)題意,解答問題:
(1)如圖1,已知直線y=2x+4與x軸、y軸分別交于A、B兩點,求線段AB的長.
(2)如圖2,類比(1)的解題過程,請你通過構(gòu)造直角三角形的方法,求出點M(3,4)與點N(﹣2,﹣1)之間的距離.
(3)在(2)的基礎上,若有一點D在x軸上運動,當滿足DM=DN時,請求出此時點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把等邊△ABC沿著DE折疊,使點A恰好落在BC邊上的點P處,且DP⊥BC,若BP=4cm,則AD的長為( )
A. 5 B. 3 C. 4 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北京,上海兩地的兩個廠家同時生產(chǎn)同種型號的計算機,除本地使用外,北京可調(diào)運給外地10臺,上?烧{(diào)運給外地4臺,現(xiàn)協(xié)議給武漢6臺,重慶8臺,每臺的運費如下表所示,現(xiàn)有一種調(diào)運方案,預計的運費為7600元,這種調(diào)運方案中,北京,上海應分別調(diào)往武漢,重慶各多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用小立方體搭一個幾何體,使它從正面、從上面看到的形狀圖如圖所示,這樣的幾何體只有一種嗎?
(1)它最多需要多少個小立方體?它最少需要多少個小立方體?
(2)請你畫出這兩種情況下的從左面看到的形狀圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD,BE.以下四個結(jié)論:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中結(jié)論正確的個數(shù)是
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【新知理解】
如圖①,點C在線段AB上,圖中共有三條線段AB、AC和BC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是線段AB的“巧點”.
線段的中點__________這條線段的“巧點”;(填“是”或“不是”).
若AB = 12cm,點C是線段AB的巧點,則AC=___________cm;
【解決問題】
(3) 如圖②,已知AB=12cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動:點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動,點P、Q同時出發(fā),當其中一點到達終點時,運動停止,設移動的時間為t(s).當t為何值時,A、P、Q三點中其中一點恰好是另外兩點為端點的線段的巧點?說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com