如圖,石景山游樂園的觀覽車半徑為25m,已知觀覽車?yán)@圓心O順時針做勻速運(yùn)動,旋轉(zhuǎn)一周用12分鐘.某人從觀覽車的最低處(地面A處)乘車,問經(jīng)過4分鐘后,此人距地面CD的高度是多少米?(觀覽車距最低處地面高度不計).
連接OA,由題意得OA⊥CD,

設(shè)旋轉(zhuǎn)4分鐘后,此人到達(dá)B處,連接OB,則∠AOB=360°×
4
12
=120°,
過B、O分別作BE⊥CD于E,OF⊥BE于F;
∴∠BFO=90°,
∴四邊形OFEA為矩形,
∴FE=OA=25,∠BOF=120°-90°=30°;
在Rt△BFO中,
∵OB=25,
∴BF=
1
2
OB=
25
2
,
∴BE=BF+FE=
25
2
+25=37.5,
∴人距地面37.5m.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖PT是⊙O的切線,T為切點(diǎn),PAB是經(jīng)過圓心O的割線.
(1)求證:∠PTA=∠BTO;
(2)若PT=4,PA=2,求sinB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,AB=10,AC=8,BC=6,經(jīng)過點(diǎn)C且與邊AB相切的動圓與CA、CB分別相交于點(diǎn)P、Q,則線段PQ長度的最小值是( 。
A.4.75B.4.8C.5D.4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,AE交⊙O于點(diǎn)F且與⊙O的切線CD互相垂直,垂足為D,連結(jié)AC,OC,CB.有下列結(jié)論:①∠1=∠2;②OCAE;③AF=OC;④△ADC△ACB.其中結(jié)論正確的是______(寫出序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:AB是⊙O的直徑,BC、CD分別是⊙O的切線,切點(diǎn)分別為B、D,E是BA和CD的延長線的交點(diǎn).
(1)猜想AD與OC的位置關(guān)系,并加以證明;
(2)設(shè)AD•OC的積為S,⊙O的半徑為r,試探究S與r的關(guān)系;
(3)當(dāng)r=2,sin∠E=
1
3
時,求AD和OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖AF是⊙O的直徑,以O(shè)A為直徑的⊙C與⊙O的弦AB相交于點(diǎn)D,DE⊥OB,垂足為E,求證:
(1)D是AB的中點(diǎn);
(2)DE是⊙C的切線;
(3)BE•BF=2AD•ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(-1,0),以線段AB上一點(diǎn)P為圓心作圓與OA,OB均相切,則點(diǎn)P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA是⊙O的切線,切點(diǎn)為A,割線PCB交⊙O于C、B兩點(diǎn),半徑OD⊥BC,垂足為E,AD交PB于點(diǎn)F.
(1)PA與PF是否相等?______(填“是”或“否”);
(2)若F是PB的中點(diǎn),CF=1.5,則切線PA的長為______.

查看答案和解析>>

同步練習(xí)冊答案