【題目】某中學為落實市教育局提出的全員育人,創(chuàng)辦特色學校的會議精神,決心打造書香校園,計劃用不超過1900本科技類書籍和1620本人文類書籍,組建中、小型兩類圖書角共30.已知組建一個中型圖書角需科技類書籍80本,人文類書籍50本;組建一個小型圖書角需科技類書籍30本,人文類書籍60本.

1)符合題意的組建方案有幾種?請你幫學校設計出來;

2)若組建一個中型圖書角的費用是860元,組建一個小型圖書角的費用是570元,試說明(1)中哪種方案費用最低,最低費用是多少元?

【答案】1)有三種組建方案:方案一,中型圖書角18個,小型圖書角12個;方案二,中型圖書角19個,小型圖書角11個;方案三,中型圖書角20個,小型圖書角10個;

2)方案一費用最低,最低費用是22320元.

【解析】

1)設組建中型圖書角x個,則組建小型圖書角為(30-x)個;根據(jù)不等關系:科技類書籍不超過1900本;人文類書籍不超過1620本.列不等式組,進行求解;

2)此題有兩種方法:方法一:因為總個數(shù)是不變的,所以費用少的越多,總費用越少;

方法二:分別計算(1)中方案的價錢,再進一步比較.

解:(1)設組建中型圖書角x個,則組建小型圖書角為(30-x)個.

由題意得

解這個不等式組得18≤x≤20

由于x只能取整數(shù),

∴x的取值是18,19,20

x=18時,30-x=12;當x=19時,30-x=11;當x=20時,30-x=10

故有三種組建方案:方案一,組建中型圖書角18個,小型圖書角12個;方案二,組建中型圖書角19個,小型圖書角11個;方案三,組建中型圖書角20個,小型圖書角10個.

2)方法一:由于組建一個中型圖書角的費用大于組建一個小型圖書角的費用,因此組建中型圖書角的數(shù)量越少,費用就越低,故方案一費用最低,

最低費用是860×18+570×12=22320(元).

方法二:方案一的費用是:860×18+570×12=22320(元);

方案二的費用是:860×19+570×11=22610(元);

方案三的費用是:860×20+570×10=22900(元)

故方案一費用最低,最低費用是22320元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ACB和△DCE均為等腰三角形,點A、D、E在同一條直線上,BCAE相交于點O,連接BE,若∠CAB=CBA=CDE=CED=50°。

1)求證:AD=BE

2)求∠AEB! 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y1=﹣ x+2與x軸,y軸分別交于B,C,拋物線y=ax2+bx+c(a≠0)經過點A,B,C,點A坐標為(﹣1,0).

(1)求拋物線的解析式;
(2)拋物線的對稱軸與x軸交于點D,連接CD,點P是直線BC上方拋物線上的一動點(不與B,C重合),當點P運動到何處時,四邊形PCDB的面積最大?求出此時四邊形PCDB面積的最大值和點P坐標;
(3)在拋物線上的對稱軸上:是否存在一點M,使|MA﹣MC|的值最大;是否存在一點N,使△NCD是以CD為腰的等腰三角形?若存在,直接寫出點M,點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經過幾秒,使PBQ的面積等于8cm2?

(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,從點P1﹣1,0),P2﹣1,﹣1),P31﹣1),P411),P5﹣21),P6﹣2,﹣2),依次擴展下去,則P2017的坐標為( 。

A. 504504 B. ﹣504,504 C. ﹣504﹣504 D. ﹣505,504

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線CBOA,∠C=A=120°,E、FCB上,且滿足∠FOB=AOB,OE平分∠COF

1)求∠EOB的度數(shù);

2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值;

3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=OBA?若存在,求出其度數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】清晨,張強從家跑步去迎澤公園,在公園鍛煉了一段時間后,又去附近早餐店吃早餐,然后散步走回家.下圖反映了這段時間內,張強離家的距離隨離家時間的變化而變化的情況,其中(分)表示張強離家時間,(千米)表示他離家的距離.根據(jù)圖象所反映的信息,以下四個說法正確的是(

①迎澤公園離張強家2.5千米.

②張強在迎澤公園鍛煉了15分鐘.

③迎澤公園離早餐店4千米.

④張強從早餐店回家的平均速度是3千米/小時.

A.①②B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個長為2a ,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按如圖2的形狀拼成一個正方形.

1)圖2的陰影部分的正方形的邊長是 ______

2)用兩種不同的方法求圖中陰影部分的面積.

(方法1= _____________;

(方法2=______________;

3)觀察如圖2,寫出(a+b2,(a-b2ab這三個代數(shù)式之間的等量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K-∠H33°,則∠K__________

查看答案和解析>>

同步練習冊答案