如圖,在Rt△ABC中,AC=5,BC=12,⊙O分別與邊AB,AC相切,切點(diǎn)分別為E,C,則⊙O的半徑是(  )
A.
10
3
B.
16
3
C.
20
3
D.
23
3

∵AE=AC=5,AC=5,BC=12,
∴AB=13,
∴BE=8;
∵BE2=BD•BC,
∴BD=
16
3
,
∴CD=
20
3
,
∴圓的半徑是
10
3
,
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知⊙O的半徑OA=
5
,弦AB=4,點(diǎn)C在弦AB上,以點(diǎn)C為圓心,CO為半徑的圓與線段OA相交于點(diǎn)E.
(1)求cosA的值;
(2)設(shè)AC=x,OE=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當(dāng)點(diǎn)C在AB上運(yùn)動(dòng)時(shí),⊙C是否可能與⊙O相切?如果可能,請(qǐng)求出當(dāng)⊙C與⊙O相切時(shí)的AC的長(zhǎng);如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PA、PB切⊙O于A、B,若∠APB=60°,⊙O半徑為3,求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(人教版)已知:OA、OB是⊙O的半徑,且OA⊥OB,P是射線OA上一點(diǎn)(點(diǎn)A除外),直線BP交⊙O于點(diǎn)Q,過(guò)Q作⊙O的切線交直線OA于點(diǎn)E.
(1)如圖①,若點(diǎn)P在線段OA上,求證:∠OBP+∠AQE=45°;
(2)若點(diǎn)P在線段OA的延長(zhǎng)線上,其它條件不變,∠OBP與∠AQE之間是否存在某種確定的等量關(guān)系?請(qǐng)你完成圖②,并寫出結(jié)論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,BE是⊙O的直徑,點(diǎn)A在EB的延長(zhǎng)線上,弦PD⊥BE,垂足為C,∠AOD=∠APC.
求證:AP是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
(1)試判斷直線AD與CD的位置關(guān)系,并說(shuō)明理由;
(2)連接BC,若AD=2,AC=
5
,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個(gè)半圓的圓心.F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個(gè)半圓圓弧的中點(diǎn).

(1)如圖一,連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)過(guò)點(diǎn)A分別作半圓O1和半圓O2的切線,交BD的延長(zhǎng)線和CE的延長(zhǎng)線于點(diǎn)P和點(diǎn)Q,連接PQ,①如圖二,若∠ACB=90°,DB=5,CE=3,求線段PQ的長(zhǎng);②如圖三,若連接FA,猜想PQ與FA的位置關(guān)系,并說(shuō)明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

給出下面四個(gè)命題:(1)一組對(duì)邊平行的四邊形是梯形;(2)一條對(duì)角線平分一個(gè)內(nèi)角的平行四邊形是菱形;(3)兩條對(duì)角線互相垂直的矩形是正方形;(4)圓的切線垂直于半徑,其中真命題的個(gè)數(shù)有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC內(nèi)接于⊙O,PA,PB是切線,A、B分別為切點(diǎn),若∠APB=62°,則∠C=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案