【題目】如圖,矩形ABCD中,AC與BD相交于點O.若 AO=3,∠OBC=30°,求矩形的周長和面積.

【答案】6+6 9

【解析】

根據(jù)矩形的性質(zhì)得出∠ABC=90°,ADBC,ABDCAOOC,OBODACBD,求出ACBD=2AO=6,OBOC求出AB、BC,最后求出周長和面積即可

∵四邊形ABCD是矩形,AO=3,∴∠ABC=90°,ADBCABDC,AOOC,OBOD,ACBD,∴ACBD=2AO=6,OBOC,∴ABAC=3,由勾股定理得BC=3,∴ABDC=3,ADBC=3∴矩形ABCD的周長是AB+BC+CD+AD=6+6,矩形ABCD的面積是AB×BC=3×3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李明準(zhǔn)備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.

(1)要使這兩個正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,格點三角形(頂點為網(wǎng)格線的交點)的頂點的坐標(biāo)分別為,

(1)請在網(wǎng)格圖中建立平面直角坐標(biāo)系;

(2)先向左平移5個單位長度,再向下平移6個單位長度,請畫出兩次平移后的,并直接寫出點的對應(yīng)點的坐標(biāo);

(3)內(nèi)一點,直接寫出中的對應(yīng)點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點F,則∠CBF為( 。

A.75°B.60°C.55°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某摩托車廠本周計劃每日生產(chǎn)450輛摩托車,由于工人實行輪休, 每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表: [增加的輛數(shù)為正數(shù),減少的輛數(shù)為負(fù)數(shù)]

星期

增減

5

+7

3

+4

+10

9

25

1)本周星期六生產(chǎn)多少輛摩托車?

2)本周總產(chǎn)量與計劃產(chǎn)量相比,是增加了還是減少了?為什么?

3)產(chǎn)量最多的那天比產(chǎn)量最少的那天多生產(chǎn)多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】依據(jù)國家實行的《國家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對懷柔區(qū)初一學(xué)生身高進行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在150≤x<175范圍內(nèi),隨機抽取初一學(xué)生進行抽樣調(diào)查.抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:

身高情況分組表

組別

身高(cm)

A

150≤x<155

B

155≤x<160

C

160≤x<165

D

165≤x<170

E

170≤x<175

根據(jù)統(tǒng)計圖表提供的信息,下列說法中

①抽取男生的樣本中,身高在155≤x<165之間的學(xué)生有18人;

②初一學(xué)生中女生的身高的中位數(shù)在B組;

③抽取的樣本中,抽取女生的樣本容量是38;

④初一學(xué)生身高在160≤x<170之間的學(xué)生約有800人.

其中合理的是(  )

A.①②B.①④C.②④D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形ABCD折疊使AC重合,折痕交BCE,交ADF,

1)求證:四邊形AECF為菱形;

2)若AB=4,BC=8,求菱形的邊長;

3)在(2)的條件下折痕EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)和反比例函數(shù)

如圖1,若,且函數(shù)、的圖象都經(jīng)過點.求mk的值;

如圖2,過點y軸的平行線l與函數(shù)的圖象相交于點B,與反比例函數(shù)的圖象相交于點C

,直線l與函數(shù)的圖象相交點當(dāng)點B、C、D中的一點到另外兩點的距離相等時,求的值;

過點Bx軸的平行線與函數(shù)的圖象相交與點當(dāng)的值取不大于1的任意實數(shù)時,點B、C間的距離與點BE間的距離之和d始終是一個定值.求此時k的值及定值d

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC 中,點OAC邊上的一個動點,過點O作直線MNBC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F

1)求證:EO=FO

2)當(dāng)點O運動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案