【題目】方程x2=4x的根是( 。
A.x=0B.x=4C.x=±2D.x=0或x=4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BC=5cm,BP、CP分別是∠ABC和∠ACB的角平分線,且PD∥AB,PE∥AC,則△PDE的周長(zhǎng)是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.
(1)求證:;
(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時(shí),它的對(duì)邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個(gè)比值記作T(A),即T(A)==,如T(60°)=1.
①理解鞏固:T(90°)= ,T(120°)= ,若α是等腰三角形的頂角,則T(α)的取值范圍是 ;
②學(xué)以致用:如圖2,圓錐的母線長(zhǎng)為9,底面直徑PQ=8,一只螞蟻從點(diǎn)P沿著圓錐的側(cè)面爬行到點(diǎn)Q,求螞蟻爬行的最短路徑長(zhǎng)(精確到0.1).
(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從1000個(gè)零件中任意抽取100個(gè)檢測(cè),有2個(gè)不合格,估計(jì)這1000個(gè)零件中合格的零件約有_____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB交AB于E,F(xiàn)在AC上,∠B=∠CFD. 證明:
(1)CF=EB
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:如何將邊長(zhǎng)為n(n≥5,且n為整數(shù))的正方形分割為一些1x5或2×3的矩形(axb 的矩形指邊長(zhǎng)分別為a,b的矩形)?
問(wèn)題探究:我們先從簡(jiǎn)單的問(wèn)題開(kāi)始研究解決,再把復(fù)雜問(wèn)題轉(zhuǎn)化為已解決的問(wèn)題.
探究一:
如圖①,當(dāng)n=5時(shí),可將正方形分割為五個(gè)1×5的矩形.
如圖②,當(dāng)n=6時(shí),可將正方形分割為六個(gè)2×3的矩形.
如圖③,當(dāng)n=7時(shí),可將正方形分割為五個(gè)1×5的矩形和四個(gè)2×3的矩形
如圖④,當(dāng)n=8時(shí),可將正方形分割為八個(gè)1×5的矩形和四個(gè)2×3的矩形
如圖⑤,當(dāng)n=9時(shí),可將正方形分割為九個(gè)1×5的矩形和六個(gè)2×3的矩形
探究二:
當(dāng)n=10,11,12,13,14時(shí),分別將正方形按下列方式分割:
所以,當(dāng)n=10,11,12,13,14時(shí),均可將正方形分割為一個(gè)5×5的正方形、一個(gè)(n﹣5 )×( n﹣5 )的正方形和兩個(gè)5×(n﹣5)的矩形.顯然,5×5的正方形和5×(n﹣5)的矩形均可分割為1×5的矩形,而(n﹣5)×(n﹣5)的正方形是邊長(zhǎng)分別為5,6,7,8,9 的正方形,用探究一的方法可分割為一些1×5或2×3的矩形.
探究三:
當(dāng)n=15,16,17,18,19時(shí),分別將正方形按下列方式分割:
請(qǐng)按照上面的方法,分別畫(huà)出邊長(zhǎng)為18,19的正方形分割示意圖.
所以,當(dāng)n=15,16,17,18,19時(shí),均可將正方形分割為一個(gè)10×10的正方形、一個(gè)(n﹣10 )×(n﹣10)的正方形和兩個(gè)10×(n﹣10)的矩形.顯然,10×10的正方形和10×(n﹣10)的矩形均可分割為1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是邊長(zhǎng)分別為5,6,7,8,9的正方形,用探究一的方法可分割為一些1×5或2×3的矩形.
問(wèn)題解決:如何將邊長(zhǎng)為n(n≥5,且n為整數(shù))的正方形分割為一些1×5或2×3的矩形?請(qǐng)按照上面的方法畫(huà)出分割示意圖,并加以說(shuō)明.
實(shí)際應(yīng)用:如何將邊長(zhǎng)為61的正方形分割為一些1×5或2×3的矩形?(只需按照探究三的方法畫(huà)出分割示意圖即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正n邊形繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點(diǎn)O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點(diǎn)P,連接PO,我們稱∠OAB為“疊弦角”,△AOP為“疊弦三角形”.
【探究證明】
(1)請(qǐng)?jiān)趫D1和圖2中選擇其中一個(gè)證明:“疊弦三角形”(△AOP)是等邊三角形;
(2)如圖2,求證:∠OAB=∠OAE′.
【歸納猜想】
(3)圖1、圖2中的“疊弦角”的度數(shù)分別為 , ;
(4)圖n中,“疊弦三角形” 等邊三角形(填“是”或“不是”)
(5)圖n中,“疊弦角”的度數(shù)為 (用含n的式子表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com