【題目】為了豐富同學們的課余生活,某學校計劃舉行“親近大自然”戶外活動,現(xiàn)隨機抽取了部分學生進行主題為“你最想去的景點是?”的問卷調查,要求學生必須從“A(洪家關),B(天門山),C(大峽谷),D(黃龍洞)”四個景點中選擇一項,根據(jù)調查結果,繪制了如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中所提供的信息,完成下列問題:
(1)本次調查的學生人數(shù)為;
(2)在扇形統(tǒng)計圖中,“天門山”部分所占圓心角的度數(shù)為;
(3)請將兩個統(tǒng)計圖補充完整;
(4)若該校共有2000名學生,估計該校最想去大峽谷的學生人數(shù)為

【答案】
(1)120
(2)198°
(3)補全統(tǒng)計圖如圖:


(4)500
【解析】解:(1.)本次調查的學生人數(shù)為66÷55%=120. 所以答案是120人;
(2.)在扇形統(tǒng)計圖中,“天門山”部分所占圓心角的度數(shù)為360°×55%=198°.
所以答案是198°;
(3.)選擇C的人數(shù)為:120×25%=30(人),
A所占的百分比為:1﹣55%﹣25%﹣5%=15%.
補全統(tǒng)計圖如圖:

(4.)25%×2000=500(人).
答:若該校共有2000名學生,估計該校最想去大峽谷的學生人數(shù)為500人.
所以答案是:500人.
【考點精析】關于本題考查的扇形統(tǒng)計圖和條形統(tǒng)計圖,需要了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為2的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為( )

A.(1,
B.(﹣1,2)
C.(﹣1,
D.(﹣1,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有一菱形OABC且∠A=120°,點O、B在y軸上,OA=1,現(xiàn)在把菱形向右無滑動翻轉,每次翻轉60°,點B的落點依次為B1、B2、B3…,連續(xù)翻轉2017次,則B2017的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如圖1,若點D關于直線AE的對稱點為F,求證:△ADF∽△ABC;

(2)如圖2,

在(1)的條件下,若α=45°,求證:DE2=BD2+CE2
(3)如圖3,

若α=45°,點E在BC的延長線上,則等式DE2=BD2+CE2還能成立嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=2 ,把邊BC繞點B逆時針旋轉30°得到線段BP,連接AP并延長交CD于點E,連接PC,則三角形PCE的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB的邊OB與x軸正半軸重合,點P是OA上的一動點,點N(3,0)是OB上的一定點,點M是ON的中點,∠AOB=30°,要使PM+PN最小,則點P的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店在兩周內,將標價為10元/斤的某種水果,經過兩次降價后的價格為8.1元/斤,并且兩次降價的百分率相同.
(1)求該種水果每次降價的百分率;
(2)從第一次降價的第1天算起,第x天(x為整數(shù))的售價、銷量及儲存和損耗費用的相關信息如表所示.已知該種水果的進價為4.1元/斤,設銷售該水果第x(天)的利潤為y(元),求y與x(1≤x<15)之間的函數(shù)關系式,并求出第幾天時銷售利潤最大?

時間x(天)

1≤x<9

9≤x<15

x≥15

售價(元/斤)

第1次降價后的價格

第2次降價后的價格

銷量(斤)

80﹣3x

120﹣x

儲存和損耗費用(元)

40+3x

3x2﹣64x+400


(3)在(2)的條件下,若要使第15天的利潤比(2)中最大利潤最多少127.5元,則第15天在第14天的價格基礎上最多可降多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是根據(jù)某市2010年至2014年工業(yè)生產總值繪制的折線統(tǒng)計圖,觀察統(tǒng)計圖獲得以下信息,其中信息判斷錯誤的是(
A.2010年至2014年間工業(yè)生產總值逐年增加
B.2014年的工業(yè)生產總值比前一年增加了40億元
C.2012年與2013年每一年與前一年比,其增長額相同
D.從2011年至2014年,每一年與前一年比,2014年的增長率最大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,∠A的平分線把BC邊分成長度是3和4的兩部分,則平行四邊形ABCD周長是(
A.22
B.20
C.22或20
D.18

查看答案和解析>>

同步練習冊答案