【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),延長(zhǎng)DE至F,使得AF∥CD,連接BF、CF.
(1)求證:四邊形AFCD是菱形;
(2)當(dāng)AC=4,BC=3時(shí),求BF的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)
【解析】
(1)根據(jù)鄰邊相等的平行四邊形是菱形即可證明;
(2)如圖,作FH⊥BC交BC的延長(zhǎng)線于H.在Rt△BFH中,根據(jù)勾股定理計(jì)算即可.
(1)∵AF∥CD,∴∠EAF=∠ECD.
∵E是AC中點(diǎn),∴AE=EC.
在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四邊形AFCD是平行四邊形.
∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四邊形AFCD是菱形.
(2)如圖,作FH⊥BC交BC的延長(zhǎng)線于H.
∵四邊形AFCD是菱形,∴AC⊥DF,EF=DEBC,∴∠H=∠ECH=∠CEF=90°,∴四邊形FHCE是矩形,∴FH=EC=2,EF=CH,BH=CH+BC.
在Rt△BHF中,BF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,每個(gè)小正方形的邊長(zhǎng)都為1,和的頂點(diǎn)都在格點(diǎn)上,回答下列問(wèn)題:
可以看作是經(jīng)過(guò)若干次圖形的變化平移、軸對(duì)稱、旋轉(zhuǎn)得到的,寫(xiě)出一種由得到的過(guò)程:______;
畫(huà)出繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)的圖形;
在中,點(diǎn)C所形成的路徑的長(zhǎng)度為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A、C為半徑是8的圓周上兩動(dòng)點(diǎn),點(diǎn)B為的中點(diǎn),以線段BA、BC為鄰邊作菱形ABCD,頂點(diǎn)D恰在該圓半徑的中點(diǎn)上,則該菱形的邊長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)填空:如圖,我們知道,一條線段OA繞著它的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所形成的圖形叫做 ;一個(gè)矩形ABCD繞著它的邊AB旋轉(zhuǎn)一周所形成的圖形叫做 ;
(2)如圖,將一個(gè)直角三角形ABC(∠C=900)繞著它的直角邊AC旋轉(zhuǎn)一周,也能形成一個(gè)幾何圖形。
(a)在圖中畫(huà)出這個(gè)旋轉(zhuǎn)圖形的草圖,并說(shuō)出它的名稱。
(b)如果ΔABC中AC=20,BC=15,把這個(gè)旋轉(zhuǎn)圖形沿著ΔABC的中位線DE且垂直于AC的方向橫截,得到一個(gè)什么樣的圖形?并請(qǐng)你計(jì)算所截圖形的上半部分的全面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).
(1)畫(huà)出將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°圖形.
(2)填空:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸、y軸分別交于點(diǎn)A,B,與反比例函數(shù)(為常數(shù),且)在第一象限的圖象交于點(diǎn)E,F(xiàn).過(guò)點(diǎn)E作EM⊥y軸于M,過(guò)點(diǎn)F作FN⊥x軸于N,直線EM與FN交于點(diǎn)C.若(為大于l的常數(shù)).記△CEF的面積為,△OEF的面積為,則 =________. (用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)問(wèn)題:探究同一坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)與的圖象性質(zhì)小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)這兩個(gè)函數(shù)當(dāng)時(shí)的圖象性質(zhì)進(jìn)行了探究設(shè)函數(shù)與圖象的交點(diǎn)為A、下面是小明的探究過(guò)程:
(1)如圖所示,若已知A的坐標(biāo)為,則B點(diǎn)的坐標(biāo)為______.
(2)若A的坐標(biāo)為,P點(diǎn)為第一象限內(nèi)雙曲線上不同于點(diǎn)B的任意一點(diǎn).
①設(shè)直線PA交x軸于點(diǎn)M,直線PB交x軸于點(diǎn)求證:.
證明過(guò)程如下:設(shè),直線PA的解析式為.
則
解得
所以,直線PA的解析式為______.
請(qǐng)把上面的解答過(guò)程補(bǔ)充完整,并完成剩余的證明.
②當(dāng)P點(diǎn)坐標(biāo)為時(shí),判斷的形狀,并用k表示出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最。咳舸嬖,求AP+CP的最小值,若不存在,請(qǐng)說(shuō)明理由;
(3)在以AB為直徑的⊙M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,△OAB是等邊三角形.
(1)求證:ABCD為矩形;
(2)若AB=4,求ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com