任意給定一個負數(shù),利用計算器不斷進行開立方運算,隨著開立方次數(shù)增加,結果越來越趨向(  )

A.0   B.1    C.-1    D.無法確定

 

【答案】

C 

【解析】此題主要考查了立方根的定義及性質

由于負數(shù)的立方根仍是負數(shù),且兩個負數(shù)絕對值大的反而小,由此即可得到結果.

∵負數(shù)的立方根仍是負數(shù),且兩個負數(shù)絕對值大的反而小,

∴結果越來越趨向-1.

故選C.

解答本題的關鍵是掌握好立方根的定義及性質。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、任意給定一個負數(shù),利用計算器不斷進行開立方運算,隨著開立方次數(shù)增加,結果越來越趨向( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)模擬)探索一個問題:“任意給定一個矩形A,是否存在另一個矩形B,它的周長和面積分別是已知矩形周長和面積的一半?”
(1)完成下列空格:
當已知矩形A的邊長分別為6和1時,小明是這樣研究的:設所求矩形的一邊是x,則另一邊為(
7
2
-x),由題意得方程:x(
7
2
-x)=3,化簡得:2x2-7x+6=0
∵b2-4ac=49-48>0,∴x1=
2
2
,x2=
3
2
3
2

∴滿足要求的矩形B存在.
小紅的做法是:設所求矩形的兩邊分別是x和y,由題意得方程組:
x+y=
7
2
xy=3
消去y化簡后也得到:2x2-7x+6=0,(以下同小明的做法)
(2)如果已知矩形A的邊長分別為2和1,請你仿照小明或小紅的方法研究是否存在滿足要求的矩形B.
(3)在小紅的做法中,我們可以把方程組整理為:
y=
7
2
-x
y=
3
x
,此時兩個方程都可以看成是函數(shù)解析式,從而我們可以利用函數(shù)圖象解決一些問題.如圖,在同一平面直角坐標系中畫出了一次函數(shù)和反比例函數(shù)的部分圖象,其中x和y分別表示矩形B的兩邊長,請你結合剛才的研究,回答下列問題:(完成下列空格)
①這個圖象所研究的矩形A的面積為
8
8
;周長為
18
18

②滿足條件的矩形B的兩邊長為
9+
17
4
9+
17
4
9-
17
4
9-
17
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

等腰三角形是我們熟悉的圖形之一,下面介紹一種等分等邊三角形面積的方法:如圖(1),在△ABC中,AB=AC,把底邊BC分成m等份,連接頂點A和底邊BC各等分點的線段,即可把這個三角形的面積m等分.
問題的提出:任意給定一個正n邊形,你能把它的面積m等分嗎?
探究與發(fā)現(xiàn):為了解決這個問題,我們先從簡單問題入手:怎樣從正三角形的中一心(正多邊形的各對稱軸的交點,又稱為正多邊形的中心)引線段,才能將這個正三角形的面積m等分?
如果要把正三角形的面積四等分,我們可以先連接正三角形的中心和各頂點(如圖(2),這些線段將這個正三角形分成了三個全等的等腰三角形);再把所得的每個等腰三角形的底邊四等分,連接中心和各邊等分點(如圖(3),這些線段把這個正三角形分成了12個面積相等的小三角形);最后,依次把相鄰的三個小三角形拼合在一起(如圖(4)).這樣就把正三角形的面積四等分.

(1)實驗與驗證:依照上述方法,利用刻度尺,在圖(5)中畫出一種將正三角形的面積五等分的簡單示意圖;
(2)猜想與證明:怎樣從正三角形的中心引線段,才能將這個正三角形的面積m等分?敘述你的分法并說明理由;
(3)拓展與延伸:怎樣從正方形的中心引線段,才能將這個正方形的面積m等分?(敘述方法即可,不需說明理由)
(4)向題解決:怎樣從正n邊形的中心引線段,才能將這個正n邊形的面積m等分?(敘述分法即可,不需說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

任意給定一個負數(shù),利用計算器不斷進行開立方運算,隨著開立方次數(shù)增加,結果越來越趨向


  1. A.
    0
  2. B.
    1
  3. C.
    -1
  4. D.
    無法確定

查看答案和解析>>

同步練習冊答案