【題目】如圖,拋物線經(jīng)過,,三點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對稱軸上有一點(diǎn),使的值最小,求點(diǎn)的坐標(biāo);

3)點(diǎn)軸上一動點(diǎn),在拋物線上是否存在一點(diǎn),使以,,,四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】1;(2;(3)存在,點(diǎn)的坐標(biāo)為,,

【解析】

1)設(shè)拋物線的解析式為,然后根據(jù)待定系數(shù)法進(jìn)行求解;
2)根據(jù)點(diǎn)A關(guān)于對稱軸對稱的點(diǎn)B的坐標(biāo)為(3,0),連接BC交對稱軸直線于點(diǎn)P,求出P點(diǎn)坐標(biāo)即可;
3)分點(diǎn)Nx軸下方或上方兩種情況進(jìn)行討論.

解:(1)設(shè)拋物線的解析式為

,,三點(diǎn)在拋物線上,

,

解得,,

∴拋物線的解析式為:;

2)∵拋物線的解析式為,

∴其對稱軸為直線:,

如圖1所示,連接,設(shè)直線的解析式為,

,,

,

解得,,

∴直線的解析式為,

當(dāng)時,,

;

3)存在,如圖2所示,

①當(dāng)點(diǎn)軸上方時,

∵拋物線的對稱軸為直線,,

;

②當(dāng)點(diǎn)軸下方時,過點(diǎn)軸于點(diǎn),

,

,即點(diǎn)的縱坐標(biāo)為,

,

解得,,

,,

綜上所述,點(diǎn)的坐標(biāo)為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,拋物線yax2+bx1經(jīng)過A(﹣1,0),B2,0)兩點(diǎn),交y軸于點(diǎn)C

1)求拋物線的表達(dá)式和直線BC的表達(dá)式.

2)如圖乙,點(diǎn)P為在第四象限內(nèi)拋物線上的一個動點(diǎn),過點(diǎn)Px軸的垂線PE交直線BC于點(diǎn)D

在點(diǎn)P運(yùn)動過程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.

是否存在點(diǎn)P使得以點(diǎn)O,C,D為頂點(diǎn)的三角形是等腰三角形?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,EAD的中點(diǎn),以E為頂點(diǎn)作BEF=∠EBC,EFCD于點(diǎn)F

1)求tan∠BEF

2)求DFCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長ADE,且有∠EBD=CAB

⑴求證:BE是⊙O的切線;

⑵若BC=,AC=5,求圓的直徑AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將四邊形ABCD放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A.B、C、D均落在格點(diǎn)上.

(Ⅰ)計算AD2+DC2+CB2的值等于_____;

(Ⅱ)請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出一個以AB為一邊的矩形,使該矩形的面積等于AD2+DC2+CB2,并簡要說明畫圖方法(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)、分別在邊上,沿折疊四邊形,使點(diǎn)、分別落在處,得四邊形,點(diǎn)上,過點(diǎn)于點(diǎn),連接,則下列結(jié)論:①;②;

;④若點(diǎn)的中點(diǎn),則,其中,正確結(jié)論的序號是_______.(把所有正確結(jié)論的序號都在填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P CH 的中點(diǎn),則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形和四邊形都是正方形,且

1)如圖1,連接.求證:;

2)如圖2,將正方形繞著點(diǎn)旋轉(zhuǎn)到某一位置時恰好使得.求的度數(shù);

3)在(2)的條件下,當(dāng)正方形的邊長為時,請直接寫出正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,邊上的中線,點(diǎn)為線段上一點(diǎn)(不與點(diǎn)、點(diǎn)重合),連接,作的延長線交于點(diǎn),與交于點(diǎn),連接

1)求證:;

2)求的度數(shù);

3)求的值.

查看答案和解析>>

同步練習(xí)冊答案