【題目】定義:在線段MN上存在點(diǎn)P、Q將線段MN分為相等的三部分,則稱P、Q為線段MN的三等分點(diǎn).
已知一次函數(shù)y=﹣x+3的圖象與x、y軸分別交于點(diǎn)M、N,且A、C為線段MN的三等分點(diǎn)(點(diǎn)A在點(diǎn)C的左邊).
(1)直接寫出點(diǎn)A、C的坐標(biāo);
(2)①二次函數(shù)的圖象恰好經(jīng)過(guò)點(diǎn)O、A、C,試求此二次函數(shù)的解析式;
②過(guò)點(diǎn)A、C分別作AB、CD垂直x軸于B、D兩點(diǎn),在此拋物線O、C之間取一點(diǎn)P(點(diǎn)P不與O、C重合)作PF⊥x軸于點(diǎn)F,PF交OC于點(diǎn)E,是否存在點(diǎn)P使得AP=BE?若存在,求出點(diǎn)P的坐標(biāo)?若不存在,試說(shuō)明理由;
(3)在(2)的條件下,將△OAB沿AC方向移動(dòng)到△O'A'B'(點(diǎn)A'在線段AC上,且不與C重合),△O'A'B'與△OCD重疊部分的面積為S,試求當(dāng)S=時(shí)點(diǎn)A'的坐標(biāo).
【答案】(1)點(diǎn)A、C的坐標(biāo)分別為:(1,2)、(2,1);(2)①拋物線的表達(dá)式為:y=﹣x2+x;②P的坐標(biāo)為:(,);(3)點(diǎn)A′的坐標(biāo)為:(,)
【解析】
(1)先求出M、N的坐標(biāo),再根據(jù)A、C為線段MN的三等分點(diǎn),即可求解;
(2)①設(shè)函數(shù)的表達(dá)式為:y=ax2+bx,將點(diǎn)A、C的坐標(biāo)代入上式即可求解;
②設(shè)點(diǎn)P(m,﹣m2+m),AP=BE,則(m﹣1)2+(﹣m2+m﹣2)2=,即可求解;
(3)S=S△A′GK﹣S△A′HR=×GK×A′K﹣HE×A′R=(1﹣m)(2﹣m)﹣(1﹣m)()=,即可求解.
解:(1)一次函數(shù)y=﹣x+3的圖象與x、y軸分別交于點(diǎn)M、N,令x=0,y=3,則M的坐標(biāo)為(0,3),令y=0,x=3,則N的坐標(biāo)為(3,0),由A、C為線段MN的三等分點(diǎn),則點(diǎn)A、C的坐標(biāo)分別為:(1,2)、(2,1);
(2)①設(shè)函數(shù)的表達(dá)式為:y=ax2+bx,將點(diǎn)A、C的坐標(biāo)代入上式得:,解得:,
故拋物線的表達(dá)式為:y=﹣x2+x;
②存在,理由:
設(shè)點(diǎn)P(m,﹣m2+m),
直線OC的表達(dá)式為:y=x,則點(diǎn)B(1,),BE=,
AP=BE,則(m﹣1)2+(﹣m2+m﹣2)2=,
化簡(jiǎn)得:7m2﹣15m+7=0,
解得:m=(舍去負(fù)值),
故點(diǎn)P的坐標(biāo)為:(,);
(3)設(shè)直線A′O′交OC于點(diǎn)H,交x軸于點(diǎn)G,直線A′B′交OC于點(diǎn)R,交x軸于點(diǎn)K,過(guò)點(diǎn)H作HE⊥A′B′于點(diǎn)E,
設(shè)點(diǎn)A向下平移m個(gè)單位向右平移m個(gè)單位得到A′(1+m,2﹣m),
設(shè)直線O′A′的表達(dá)式為:y=2x+b,將點(diǎn)A′的坐標(biāo)代入上式并解得:
直線O′A′的表達(dá)式為:y=2x﹣3m①,
故點(diǎn)G(,0),則GK=1+m﹣=1﹣m,
直線OC的表達(dá)式為:y=x②,
聯(lián)立①②并解得:x=2m,故點(diǎn)H(2m,m),則HE=1+m﹣2m=1﹣m,
點(diǎn)R(1+m,),則A′R=2﹣m﹣(m+1)=,
S=S△A′GK﹣S△A′HR=×GK×A′K﹣HE×A′R=(1﹣m)(2﹣m)﹣·(1﹣m)=,
解得:m=,
故點(diǎn)A′的坐標(biāo)為:(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,點(diǎn)是邊上的任一點(diǎn),連接并將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,在邊上取點(diǎn)使,連接.
(1)求證:四邊形是平行四邊形;
(2)線段與交于點(diǎn),連接,若,則與存在怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABD=∠BCD=90°,ABCD=BCBD,BM∥CD交AD于點(diǎn)M.連接CM交DB于點(diǎn)N.
(1)求證:△ABD∽△BCD;
(2)若CD=6,AD=8,求MC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索與證明:(1)如圖1,直線m經(jīng)過(guò)正三角形ABC的頂點(diǎn)A,在直線m上取兩點(diǎn) D,E,使得∠ADB=60°,∠AEC=60°.通過(guò)觀察或測(cè)量,猜想線段BD,CE與DE之間滿足的數(shù)量關(guān)系,并予以證明;
(2)將(1)中的直線m繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度到如圖2的位置,并使∠ADB=120°,∠AEC=120°.通過(guò)觀察或測(cè)量,請(qǐng)直接寫出線段BD,CE與DE之間滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為弓形AB的弦,AB=2,弓形所在圓⊙O的半徑為2,點(diǎn)P為弧AB上動(dòng)點(diǎn),點(diǎn)I為△PAB的內(nèi)心,當(dāng)點(diǎn)P從點(diǎn)A向點(diǎn)B運(yùn)動(dòng)時(shí),點(diǎn)I移動(dòng)的路徑長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在正方形網(wǎng)格中,△ABC的頂點(diǎn)坐標(biāo)分別為(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫(huà)圖和解答下列問(wèn)題:
(1)將△ABC繞著某點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到△A′B'C',請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo)和旋轉(zhuǎn)角度.
(2)畫(huà)出△ABC關(guān)于點(diǎn)A成中心對(duì)稱的△AED,若△ABC內(nèi)有一點(diǎn)P(a,b),請(qǐng)直接寫出經(jīng)過(guò)這次變換后點(diǎn)P的對(duì)稱點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+b和反比例函數(shù)y=(k≠0)交于點(diǎn)A(4,1).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com