【題目】(14分)如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過(guò)點(diǎn)C,且對(duì)稱軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為 ;拋物線的解析式為 .
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?
(3)在圖②中,若點(diǎn)P在對(duì)稱軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
【答案】(1)(1,4);y=﹣(x﹣1)2+4;
(2)當(dāng)t=或t=時(shí),△PCQ為直角三角形;
(3)當(dāng)t=2時(shí),△ACQ的面積最大,最大值是1.
【解析】(1)由拋物線的對(duì)稱軸為x=1,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4),點(diǎn)A在DE上,可求得點(diǎn)A的坐標(biāo),然后設(shè)拋物線的解析式為y=a(x﹣1)2+4,將點(diǎn)C代入即可求得答案;
(2)分別從∠QPC=90°與∠PQC=90°,利用cos∠QPC求解即可求得答案;
(3)首先設(shè)直線AC的解析式為y=kx+b,利用待定系數(shù)法即可求得直線AC的解析式,然后求得點(diǎn)Q的坐標(biāo),繼而求得S△ACQ=S△AFQ+S△CPQ=FQAG+FQDG=FQ(AG+DG)=(t﹣2)2+1,則可求得答案.
解:(1)∵拋物線的對(duì)稱軸為x=1,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4),點(diǎn)A在DE上,
∴點(diǎn)A坐標(biāo)為(1,4),
設(shè)拋物線的解析式為y=a(x﹣1)2+4,
把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,
解得a=﹣1.
∴拋物線的解析式為:y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
(2)依題意有:OC=3,OE=4,
∴CE==5,
當(dāng)∠QPC=90°時(shí),
∵cos∠QPC=,
∴,
解得t=;
當(dāng)∠PQC=90°時(shí),
∵cos∠QCP=,
∴,
解得t=.
∴當(dāng)t=或t=時(shí),△PCQ為直角三角形;
(3)∵A(1,4),C(3,0),
設(shè)直線AC的解析式為y=kx+b,則,解得: .
故直線AC的解析式為y=﹣2x+6.
∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+6中,得x=1+,
∴Q點(diǎn)的橫坐標(biāo)為1+,
將x=1+代入y=﹣(x﹣1)2+4中,得y=4﹣.
<>∴Q點(diǎn)的縱坐標(biāo)為4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,
∴S△ACQ=S△AFQ+S△CPQ=FQAG+FQDG=FQ(AG+DG)=FQAD=×2(t﹣)=﹣(t﹣2)2+1,
∴當(dāng)t=2時(shí),△ACQ的面積最大,最大值是1.
“點(diǎn)睛”考查了二次函數(shù)綜合題,涉及的知識(shí)點(diǎn)有:拋物線的對(duì)稱軸,矩形的性質(zhì),待定系數(shù)法求拋物線的解析式,待定系數(shù)法求直線的解析式,勾股定理,三角形面積,二次函數(shù)的最值,以及分類思想的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知點(diǎn)A、B是反比例函數(shù)y=﹣上在第二象限內(nèi)的分支上的兩個(gè)點(diǎn),點(diǎn)C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長(zhǎng)為__.
【答案】
【解析】過(guò)點(diǎn)A作AD⊥y軸于點(diǎn)D,過(guò)點(diǎn)B作BE⊥y軸于點(diǎn)E,過(guò)點(diǎn)A作AF⊥BE軸于點(diǎn)F,如圖所示.
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
又∵AD⊥y軸,BE⊥y軸,
∴∠ACD+∠CAD=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE,∠BCE=∠CAD.
在△ACD和△CBE中,由,
∴△ACD≌△CBE(ASA).
設(shè)點(diǎn)B的坐標(biāo)為(m,﹣)(m<0),則E(0,﹣),點(diǎn)D(0,3﹣m),點(diǎn)A(﹣﹣3,3﹣m),
∵點(diǎn)A(﹣﹣3,3﹣m)在反比例函數(shù)y=﹣上,
,解得:m=﹣3,m=2(舍去).
∴點(diǎn)A的坐標(biāo)為(﹣1,6),點(diǎn)B的坐標(biāo)為(﹣3,2),點(diǎn)F的坐標(biāo)為(﹣1,2),
∴BF=2,AF=4,
故答案為:2.
【點(diǎn)睛】
過(guò)點(diǎn)A作AD⊥y軸于點(diǎn)D,過(guò)點(diǎn)B作BE⊥y軸于點(diǎn)E,過(guò)點(diǎn)A作AF⊥BE軸于點(diǎn)F,根據(jù)角的計(jì)算得出“∠ACD=∠CBE,∠BCE=∠CAD”,由此證出△ACD≌△CBE;再設(shè)點(diǎn)B的坐標(biāo)為(m,﹣),由三角形全等找出點(diǎn)A的坐標(biāo),將點(diǎn)A的坐標(biāo)代入到反比例函數(shù)解析式中求出m的值,將m的值代入A,B點(diǎn)坐標(biāo)即可得出點(diǎn)A,B的坐標(biāo),并結(jié)合點(diǎn)A,B的坐標(biāo)求出點(diǎn)F的坐標(biāo),利用勾股定理即可得出結(jié)論.
【題型】填空題
【結(jié)束】
18
【題目】二次函數(shù)y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,則m=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張方桌由1個(gè)桌面,4條桌腿組成,如果1m3木料可以做方桌的桌面50個(gè)或做桌腿300條,現(xiàn)有25m3木料,那么用多少m3的木料做桌面,多少m3的木料做桌腿,做出的桌面與桌腿,恰好能配成方桌?能配成多少?gòu)埛阶?/span>.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1) (2)
(3) (4)
【答案】(1) ;(2) ;(3) ; (4)
【解析】試題分析:(1)分子、分母分解因式后約分即可;
(2)先通分計(jì)算括號(hào)內(nèi)分式的減法,然后把除法轉(zhuǎn)化為乘法,分子、分母分解因式后約分即可;
(3)第二個(gè)分式分子、分母分解因式后約分,然后通分轉(zhuǎn)化為同分母分式,最后依照同分母分式的加減法則計(jì)算即可;
(4)先通分計(jì)算括號(hào)內(nèi)分式的減法,然后把除法轉(zhuǎn)化為乘法,分子、分母分解因式后約分即可.
試題解析:
解:(1)原式=
=;
(2)原式=
=
=;
(3)原式=
=
=
=
=;
(4)原式=
=
=.
點(diǎn)睛:此題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則和運(yùn)算順序是解本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
20
【題目】解分式方程:
(1) (2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方成同學(xué)看到一則材料:甲開(kāi)汽車,乙騎自行車從M地出發(fā)沿一條公路勻速前往N地.設(shè)乙行駛的時(shí)間為t(h),甲乙兩人之間的距離為y(km),y與t的函數(shù)關(guān)系如圖1所示.
方成思考后發(fā)現(xiàn)了如圖1的部分正確信息:乙先出發(fā)1h;甲出發(fā)0.5小時(shí)與乙相遇.
請(qǐng)你幫助方成同學(xué)解決以下問(wèn)題:
(1)分別求出線段BC,CD所在直線的函數(shù)表達(dá)式;
(2)當(dāng)20<y<30時(shí),求t的取值范圍;
(3)分別求出甲,乙行駛的路程S甲,S乙與時(shí)間t的函數(shù)表達(dá)式,并在圖2所給的直角坐標(biāo)系中分別畫(huà)出它們的圖象;
(4)丙騎摩托車與乙同時(shí)出發(fā),從N地沿同一公路勻速前往M地,若丙經(jīng)過(guò)h與乙相遇,問(wèn)丙出發(fā)后多少時(shí)間與甲相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2米時(shí),水面寬4米.若水面下降1米,則水面寬度將增加多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用20m的籬笆圍成一個(gè)矩形的花圃.設(shè)連墻的一邊為x(m),矩形的面積為y(m2).
(1)寫出y關(guān)于x的函數(shù)解析式;
(2)當(dāng)x=3時(shí),矩形的面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把按下列要求進(jìn)行操作:若指數(shù)為奇數(shù)則乘以,若指數(shù)為偶數(shù)則把它的指數(shù)除以2,如此繼續(xù)下去,則第幾次操作時(shí)的指數(shù)為4?第10次操作時(shí)的指數(shù)是多少?你有什么發(fā)現(xiàn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
如果函數(shù)y=f(x)滿足:對(duì)于自變量x的取值范圍內(nèi)的任意x1,x2,
(1)若,都有,則稱f(x)是增函數(shù);
(2)若,都有,則稱f(x)是減函數(shù).
例題:證明函數(shù)f(x)=是減函數(shù).
證明:設(shè),
∵,
∴.
∴.即.
∴.
∴函數(shù)是減函數(shù).
根據(jù)以上材料,解答下面的問(wèn)題:
已知函數(shù)f(x)=(x<0),例如f(-1)==-3,f(-2)==-
(1)計(jì)算:f(-3)= ;
(2)猜想:函數(shù)f(x)=(x<0)是 函數(shù)(填“增”或“減”);
(3)請(qǐng)仿照例題證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com