【題目】在正方形網(wǎng)格中,每個小正方形的邊長都為1個單位長度,△ABC的三個頂點的位置如圖所示,現(xiàn)將ABC平移后得△DEF,使點A的對應(yīng)點為點D,點B的對應(yīng)點為點E

(1)畫出△DEF;

(2)連接AD、BE,則線段ADBE的關(guān)系是 ;

(3)求△DEF的面積.

【答案】(1)作圖見解析;(2)平行且相等;(3)3.5.

【解析】分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點B、C的對應(yīng)點E、F的位置,再與點D順次連接即可;

(2)根據(jù)平移變化的性質(zhì),對應(yīng)點的連線平行且相等解答;

(3)利用四邊形ABDC面積等于四邊形所在的矩形的面積減去四周四個小直角三角形的面積,列式計算即可得解.

本題解析: (1) 如圖:

(2)平行且相等

(3)s=3×3-×2×1-×2×3-×1×3=3.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列對于三角形的高、中線、角平分線的說法中正確的是(

A.都是線段B.都是直線C.都是射線D.以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形中,∠A=∠C=90°.

(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補角,請寫出BEDF的位置關(guān)系,并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補角,判斷DEBF位置關(guān)系并證明.

(3)如圖3,若BE、DE分別五等分∠ABC、∠ADC的鄰補角(即∠CDE=,∠CBE=),則∠E=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC=60°,ABC、ACB的平分線交于E,DAE延長線上一點,且∠BDC=120°.下列結(jié)論:①∠BEC=120°;DB=DC;DB=DE;④∠BDE=BCA.其中正確結(jié)論的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC, ∠ABC、∠ACB的三等分線交于點E、D,若∠BFC=132°,∠BGC=118°,則∠A的度數(shù)為( )

A. 65° B. 66° C. 70° D. 78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(1 ;(2

3;(4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是由邊長為1個單位長度的小正方形組成的網(wǎng)格圖.

1)請在圖中建立平面直角坐標系,使AB兩點的坐標分別為A2,3)、B-2,0);

2)正方形網(wǎng)格中,每個小正方形的頂點稱為格點,以格點為頂點的三角形叫做格點三角形,在圖中畫出格點ABC使得AB=AC,請寫出在(1)中所建坐標系內(nèi)所有滿足條件的點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB,一條光線從點A出發(fā)后射向OB邊.若光線與OB邊垂直,則光線沿原路返回到點A,此時∠A90°83°.∠A83°時,光線射到OB邊上的點A1后,經(jīng)OB反射到線段AO上的點A2,易知∠1∠2.A1A2⊥AO,光線又會沿A2→A1→A原路返回到點A,此時∠A76°.…若光線從A點出發(fā)后,經(jīng)若干次反射能沿原路返回到點A,則銳角∠A的最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年,我省啟動了“關(guān)愛留守兒童工程”.某村小為了了解各年級留守兒童的數(shù)量,對一到六年級留守兒童數(shù)量進行了統(tǒng)計,得到每個年級的留守兒童人數(shù)分別為10,15,10,17,18,20.對于這組數(shù)據(jù),下列說法錯誤的是(

A.平均數(shù)是15 B.眾數(shù)是10 C.中位數(shù)是17 D.方差是

查看答案和解析>>

同步練習(xí)冊答案