【題目】如圖,以AB為直徑的⊙O外接于△ABC,過A點(diǎn)的切線AP與BC的延長線交于點(diǎn)P,∠APB的平分線分別交AB,AC于點(diǎn)D,E,其中AE,BD(AE<BD)的長是一元二次方程x2﹣5x+6=0的兩個(gè)實(shí)數(shù)根.
(1)求證:PABD=PBAE;
(2)在線段BC上是否存在一點(diǎn)M,使得四邊形ADME是菱形?若存在,請給予證明,并求其面積;若不存在,說明理由.
【答案】(1)證明見解析;(2)存在,
【解析】(1)易證∠APE=∠BPD,∠EAP=∠B,從而可知△PAE∽△PBD,利用相似三角形的性質(zhì)即可求出答案.
(2)過點(diǎn)D作DF⊥PB于點(diǎn)F,作DG⊥AC于點(diǎn)G,易求得AE=2,BD=3,由(1)可知:,從而可知cos∠BDF=cos∠BAC=cos∠APC=,從而可求出AD和DG的長度,進(jìn)而證明四邊形ADFE是菱形,此時(shí)F點(diǎn)即為M點(diǎn),利用平行四邊形的面積即可求出菱形ADFE的面積.
(1)∵PD平分∠APB,
∴∠APE=∠BPD,
∵AP與⊙O相切,
∴∠BAP=∠BAC+∠EAP=90°,
∵AB是⊙O的直徑,
∴∠ACB=∠BAC+∠B=90°,
∴∠EAP=∠B,
∴△PAE∽△PBD,
∴,
∴PABD=PBAE;
(2)如圖,過點(diǎn)D作DF⊥PB于點(diǎn)F,作DG⊥AC于點(diǎn)G,
∵PD平分∠APB,AD⊥AP,DF⊥PB,
∴AD=DF,
∵∠EAP=∠B,
∴∠APC=∠BAC,
易證:DF∥AC,
∴∠BDF=∠BAC,
由于AE,BD(AE<BD)的長是x2﹣5x+6=0的兩個(gè)實(shí)數(shù)根,
解得:AE=2,BD=3,
∴由(1)可知:,
∴cos∠APC=,
∴cos∠BDF=cos∠APC=,
∴,
∴DF=2,
∴DF=AE,
∴四邊形ADFE是平行四邊形,
∵AD=DF,
∴四邊形ADFE是菱形,此時(shí)點(diǎn)F即為M點(diǎn),
∵cos∠BAC=cos∠APC=,
∴sin∠BAC=,
∴,
∴DG=,
∴菱形ADME的面積為:DGAE=2×=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,.設(shè)為最長邊.當(dāng)時(shí),是直角三角形;當(dāng)時(shí),利用代數(shù)式和的大小關(guān)系,探究的形狀(按角分類).
(1)當(dāng)三邊分別為6、8、9時(shí),為______三角形;當(dāng)三邊分別為6、8、11時(shí),為______三角形.
(2)猜想,當(dāng)______時(shí),為銳角三角形;當(dāng)______時(shí),為鈍角三角形.
(3)判斷當(dāng),時(shí),的形狀,并求出對應(yīng)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=8,BC=6,分別以△ABC的邊AB、BC、CA為一邊向△ABC外作正方形ABDE、BCMN、CAFG,連接EF、ND,則圖中陰影部分的面積之和等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=30°,點(diǎn)O是邊AB上一點(diǎn),以點(diǎn)O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點(diǎn)D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( 。
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為正六邊形ABCDEF的中心,點(diǎn)M為AF中點(diǎn),以點(diǎn)O為圓心,以OM的長為半徑畫弧得到扇形MON,點(diǎn)N在BC上;以點(diǎn)E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在反比例函數(shù)y=的圖象上,過點(diǎn)A、B作x軸的垂線,垂足分別是M、N,射線AB交x軸于點(diǎn)C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( )
A.2 B.4 C.﹣2 D.﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=2cm,BC=3cm,點(diǎn)P沿B→A→D運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)的同時(shí),另一點(diǎn)Q從B→C運(yùn)動(dòng),速度是點(diǎn)P的一半,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的路程為xcm,其中設(shè),可可根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是可可的探究過程,請補(bǔ)充完整.
(1)如圖是畫出的函數(shù)與x的函數(shù)圖象,觀察圖象.當(dāng)x=1時(shí),=_____;并寫出函數(shù)的一條性質(zhì):________________________________________.
(2)請幫助可可寫出與x的函數(shù)關(guān)系式(不用寫出取值范圍)__________________.
(3)請按照列表、描點(diǎn)、連線的步驟在同一直角坐標(biāo)系中,畫出函數(shù)的圖象.
(4)結(jié)合畫出函數(shù)圖象,解決問題:當(dāng)時(shí),點(diǎn)P運(yùn)動(dòng)的路程x=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一架外國偵察機(jī)沿方向侵入我國領(lǐng)空進(jìn)行非法偵察,我空軍的戰(zhàn)斗機(jī)沿方向與外國偵察機(jī)平行飛行,進(jìn)行跟蹤監(jiān)視,我機(jī)在處與外國偵察機(jī)處的距離為米,為,這時(shí)外國偵察機(jī)突然轉(zhuǎn)向,以偏左的方向飛行,我機(jī)繼續(xù)沿方向以米/秒的速度飛行,外國偵察機(jī)在點(diǎn)故意撞擊我戰(zhàn)斗機(jī),使我戰(zhàn)斗機(jī)受損.問外國偵察機(jī)由到的速度是多少?(結(jié)果保留整數(shù),參考數(shù)據(jù),)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在AB、AD邊上,若AM:MB=AN:ND=1:2,則tan∠MCN=
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com