【題目】 1是一款優(yōu)雅且穩(wěn)定的拋物線型落地?zé)簦阑菽?/span>C為拋物線支架的最高點(diǎn),燈罩D距離地面1.86米,燈柱AB及支架的相關(guān)數(shù)據(jù)如圖2所示.若茶幾擺放在燈罩的正下方,則茶幾到燈柱的距離AE_____米.

【答案】2.7

【解析】

由題意構(gòu)造直角坐標(biāo)系,設(shè)點(diǎn)A為坐標(biāo)原點(diǎn),由題意可知:防滑螺母C為拋物線支架的最高點(diǎn),由圖象中的數(shù)據(jù),就可得到頂點(diǎn)A的坐標(biāo)及點(diǎn)B的坐標(biāo),再利用待定系數(shù)法求出函數(shù)解析式,再根據(jù)燈罩D距離地面1.86米,茶幾擺放在燈罩的正下方,將y1.86代入函數(shù)解析式求出x的值,就可得到茶幾到燈柱的距離AE

解:如圖所示,以點(diǎn)A為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,

由題意可知:防滑螺母C為拋物線支架的最高點(diǎn)
∴頂點(diǎn)C的坐標(biāo)為:(1.5,2.5),B點(diǎn)坐標(biāo)為(0,1.5),
設(shè)拋物線的解析式為yax1.522.5,
將點(diǎn)B0,1.5)代入得:a01.522.51.5,
解之:a,
,
∵燈罩D距離地面1.86米,茶幾擺放在燈罩的正下方,
當(dāng)y1.86時(shí),

解得:x10.3x22.7,
∵茶幾在對(duì)稱軸的右側(cè)
x2.7,
∴茶幾到燈柱的距離AE2.7m
故答案為:2.7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2(2k1)xk210有兩個(gè)實(shí)數(shù)根x1,x2

(1)求實(shí)數(shù)k的取值范圍

(2)x1,x2滿足x12x2216x1x2,求實(shí)數(shù)k的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為培養(yǎng)青少年科技創(chuàng)新能力,舉辦了動(dòng)漫制作活動(dòng),小明設(shè)計(jì)了點(diǎn)做圓周運(yùn)動(dòng)的一個(gè)雛型.如圖所示,甲、乙兩點(diǎn)分別從直徑的兩端點(diǎn)、以順時(shí)針、逆時(shí)針的方向同時(shí)沿圓周運(yùn)動(dòng).甲運(yùn)動(dòng)的路程與時(shí)間滿足關(guān)系:),乙以4的速度勻速運(yùn)動(dòng),半圓的長(zhǎng)度為21

1)甲運(yùn)動(dòng)4后的路程是多少?

2)甲、乙從開始運(yùn)動(dòng)到第一次相遇時(shí),它們運(yùn)動(dòng)了多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=CD,若點(diǎn)E、F分別為邊BCCD上的兩點(diǎn),且∠EAF=CAD

1)求證:△ADF∽△ACE;

2)求證:AE=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,把一個(gè)直角三角尺ACB繞著30°角的頂點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合.

1三角尺旋轉(zhuǎn)了 。

2連接CD,試判斷CBD的形狀;

3BDC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+4x-1y軸交于點(diǎn)C,CDx軸交拋物線于另一點(diǎn)D,ABx軸交拋物線于點(diǎn)A,B,點(diǎn)A在點(diǎn)B的左側(cè),且兩點(diǎn)均在第一象限,BHCD于點(diǎn)H.設(shè)點(diǎn)A的橫坐標(biāo)為m

1)當(dāng)m=1時(shí),求AB的長(zhǎng).

2)若AH=CH-DH),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=6,BC=8,若AC,BC邊上的中線BE,AD 垂直相交于點(diǎn)O,則AB=(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計(jì)劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對(duì)四門功課的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進(jìn)行整理,并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計(jì)圖中∠α的度數(shù)是多少?

(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項(xiàng)藝術(shù)形式中選擇其中兩項(xiàng)組成一個(gè)新的節(jié)目形式,請(qǐng)用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】熊組長(zhǎng)準(zhǔn)備為我們年級(jí)投資1萬元圍一個(gè)矩形的運(yùn)動(dòng)場(chǎng)地(如圖),其中一邊靠墻,另外三邊選用不同材料建造且三邊的總長(zhǎng)為,墻長(zhǎng),平行于墻的邊的費(fèi)用為200/,垂直于墻的邊的費(fèi)用150/,設(shè)平行與墻的邊長(zhǎng)為

1)若運(yùn)動(dòng)場(chǎng)地面積為,求的值;

2)當(dāng)運(yùn)動(dòng)場(chǎng)地的面積最大時(shí)是否會(huì)超了預(yù)算.

查看答案和解析>>

同步練習(xí)冊(cè)答案