【題目】已知一元二次方程x2﹣6x﹣5=0兩根為a、b,則
①a+b=
②ab=

【答案】6;-5
【解析】解:①∵一元二次方程x2﹣6x﹣5=0兩根為a、b,
∴a+b=6.
所以答案是:6;②∵一元二次方程x2﹣6x﹣5=0兩根為a、b,
∴ab=﹣5.
所以答案是:﹣5.
【考點精析】本題主要考查了根與系數(shù)的關(guān)系的相關(guān)知識點,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青年節(jié),市團委組織部分中學(xué)的團員去西山植樹.某校九年級(3)班團支部領(lǐng)到一批樹苗,若每人植4棵樹,還剩37棵;若每人植6棵樹,則最后一人有樹植,但不足3棵,這批樹苗共有__棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)軸交于AB兩點(點A在點B的左側(cè)),點A、點B的橫坐標(biāo)是一元二次方程的兩個根.

(1)請直接寫出點AB的坐標(biāo),并求出該二次函數(shù)的解析式.

(2)如圖1,在二次函數(shù)對稱軸上是否存在點P,使的周長最小,若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

(3)如圖2,連接AC、BC,點Q是線段OB上一個動點(點Q不與點O、B重合). 過點QQDAC交于BCD,設(shè)Q點坐標(biāo)(m,0),當(dāng)面積S最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校組織植樹活動,已知在甲處植樹的有14人,在乙處植樹的有6人,現(xiàn)調(diào)70人去支援.
(1)若要使在甲處植樹的人數(shù)與在乙處植樹的人數(shù)相等,應(yīng)調(diào)往甲處人.
(2)若要使在甲處植樹的人數(shù)是在乙處植樹人數(shù)的2倍,問應(yīng)調(diào)往甲、乙兩處各多少人?
(3)通過適當(dāng)?shù)恼{(diào)配支援人數(shù),使在甲處植樹的人數(shù)恰好是在乙處植樹人數(shù)的n倍(n是大于1的正整數(shù),不包括1.)則符合條件的n的值共有個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣2(x﹣1)2+3的圖象的頂點坐標(biāo)是 , 對稱軸為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)x為何值時,代數(shù)式x2-13x+12的值與代數(shù)式-4x2+18的值相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于中心對稱的兩個圖形,對稱點的連線經(jīng)過__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,E,F(xiàn)分別是BC,AC的中點,延長BA到點D,使AD=AB.連接DE,DF.
(1)求證:AF與DE互相平分;
(2)若BC=4,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具店購進一批紀念冊,每本進價為20元,出于營銷考慮,要求每本紀念冊的售價不低于20元且不高于28元,在銷售過程中發(fā)現(xiàn)該紀念冊每周的銷售量y(本)與每本紀念冊的售價x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷售單價為22元時,銷售量為36本;當(dāng)銷售單價為24元時,銷售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷售這種紀念冊獲得150元的利潤時,每本紀念冊的銷售單價是多少元?

(3)設(shè)該文具店每周銷售這種紀念冊所獲得的利潤為w元,將該紀念冊銷售單價定為多少元時,才能使文具店銷售該紀念冊所獲利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案