【題目】1)如圖1a∥b,則∠1+∠2=

2)如圖2,AB∥CD,則∠1+∠2+∠3= ,并說明理由

3)如圖3,a∥b,則∠1+∠2+∠3+∠4=

4)如圖4,a∥b,根據(jù)以上結(jié)論,試探究∠1+∠2+∠3+∠4+…+∠n= (直接寫出你的結(jié)論,無需說明理由)

【答案】故答案為:180°;360°540°;(n﹣1180°

【解析】

1)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得出答案;(2)過點(diǎn)EEFAB,根據(jù)平行線的性質(zhì)得出答案;(3)過∠2、∠3的頂點(diǎn)作a的平行線,然后根據(jù)平行線的性質(zhì)得出答案;(4)過∠2、∠3…的頂點(diǎn)作a的平行線,然后根據(jù)平行線的性質(zhì)得出答案.

1)∵ab

∴∠1+2=180°;

2)過點(diǎn)EEFAB,

ABCD,

ABCDEF,

∴∠1+AEF=180°,∠CEF+2=180°,

∴∠1+AEF+CEF+2=180°+180°,

即∠1+2+3=360°;

3)如圖,過∠2、∠3的頂點(diǎn)作a的平行線,

則∠1+2+3+4=180°×3=540°;

4)如圖,過∠2、∠3…的頂點(diǎn)作a的平行線,

則∠1+2+3+4+…+n=n1180°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B在第一象限內(nèi),點(diǎn)C是二次函數(shù)圖象的頂點(diǎn),點(diǎn)M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn),過點(diǎn)B作軸的垂線,垂足為N,且SAMO:S四邊形AONB=1:48.

(1)求直線AB和直線BC的解析式;
(2)點(diǎn)P是線段AB上一點(diǎn),點(diǎn)D是線段BC上一點(diǎn),PD∥x軸,射線PD與拋物線交于點(diǎn)G,過點(diǎn)P作PE⊥x軸于點(diǎn)E,PF⊥BC于點(diǎn)F.當(dāng)PF與PE的乘積最大時(shí),在線段AB上找一點(diǎn)H(不與點(diǎn)A,點(diǎn)B重合),使GH+ BH的值最小,求點(diǎn)H的坐標(biāo)和GH+ BH的最小值;
(3)如圖2,直線AB上有一點(diǎn)K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′;當(dāng)△A′C′K是直角三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建美麗鄉(xiāng)村,某村計(jì)劃購買甲、乙兩種樹苗共400棵,對(duì)本村道路進(jìn)行綠化改造,已知甲種樹苗每棵200元,乙種樹苗每棵300元.

若購買兩種樹苗的總金額為90000元,求需購買甲、乙兩種樹苗各多少棵?

若購買甲種樹苗的金額不少于購買乙種樹苗的金額,則至少應(yīng)購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時(shí),求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABBC,按以下步驟作圖:以A為圓心,小于AD的長為半徑畫弧,分別交AB、CDEF;再分別以EF為圓心,大于EF的長半徑畫弧,兩弧交于點(diǎn)G;作射線AGCD于點(diǎn)H.則下列結(jié)論:①AG平分∠DAB,CH=DH③△ADH是等腰三角形,④SADH=S四邊形ABCH

其中正確的有( 。

A. ①②③ B. ①③④ C. ②④ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個(gè)數(shù)是( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點(diǎn)B的直線折疊,點(diǎn)O恰好落在 上的點(diǎn)D處,折痕交OA于點(diǎn)C,則陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,過點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AEBCE,延長EGCDF

(感知)(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),猜想FGFD的數(shù)量關(guān)系,并說明理由.

(探究)(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),(1)中結(jié)論是否仍然成立?請(qǐng)說明理由.

(應(yīng)用)(3)在圖②中,當(dāng)DF=3CE=5時(shí),直接利用探究的結(jié)論,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ 是△ 的外接圓, 為直徑,弦 , 的延長線于點(diǎn) ,求證:

(Ⅰ) ;
(Ⅱ) 是⊙ 的切線.

查看答案和解析>>

同步練習(xí)冊(cè)答案