【題目】如圖,在△ABC中,∠ABC=90°,以BC為直徑作⊙O,交AC于D.E為的中點(diǎn),連接CE,BE,BE交AC于F.
(1)求證:AB=AF;
(2)若AB=3,BC=4,求CE的長(zhǎng).
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)先證明∠EBC=∠ECF, 再證明∠ABF=∠AFB,即可得AB=AF;
(2)先應(yīng)用勾股定理求出AC的長(zhǎng),用AC-AF求出CF的長(zhǎng),再應(yīng)用△EFC∽△ECB可求出CE的長(zhǎng).
試題解析:解:(1)證明:∵BC直徑為⊙O的直徑,∴∠BEC=90°,∴∠ECF+∠EFC=90°.
∵∠ABC=90°,∴∠ABF+∠EBC=90°.又∵E為的中點(diǎn),∴∠EBC=∠ECF,∴∠EFC=∠ABF.又∵∠AFB=∠EFC,∴∠AFB=∠ABF,∴AB=AF;
(2)∵∠ABC=90°,∴AC===5.又∵AB=AF=3,∴CF=AC-AF=5-3=2.∵∠EBC=∠ECF,∠E=∠E,∴△EFC∽△ECB.∴.∴BE=2CE.∵∠BEC=90°,∴,∴,∴CE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要反映嘉興市一天內(nèi)氣溫的變化情況宜采用( 。
A.條形統(tǒng)計(jì)圖
B.扇形統(tǒng)計(jì)圖
C.折線統(tǒng)計(jì)圖
D.頻數(shù)分布直方圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某奶茶店每杯奶茶的成本價(jià)為5元,市場(chǎng)調(diào)查表明,若每杯定價(jià)a元,則一天可賣出(800﹣100a)杯,但物價(jià)局規(guī)定每件商品的利潤(rùn)率不得超過20%,商品計(jì)劃一天要盈利200元,問每杯應(yīng)定價(jià)多少元?一天可以賣出多少杯?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(﹣1,0),點(diǎn)B(0,﹣2),AD與y軸交于點(diǎn)E,且E為AD的中點(diǎn),雙曲線y=經(jīng)過C,D兩點(diǎn)且D(a,4)、C(2,b).
(1)求a、b、k的值;
(2)如圖2,線段CD能通過旋轉(zhuǎn)一定角度后點(diǎn)C、D的對(duì)應(yīng)點(diǎn)C′、D′還能落在y=的圖象上嗎?如果能,寫出你是如何旋轉(zhuǎn)的,如果不能,請(qǐng)說明理由;
(3)如圖3,點(diǎn)P在雙曲線y=上,點(diǎn)Q在y軸上,若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,試求滿足要求的所有點(diǎn)P、Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長(zhǎng)溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚里溫度y(℃)隨時(shí)間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線的一部分,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求k的值;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚里溫度在15℃及15℃以上的時(shí)間有多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程kx2﹣2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( )
A.k>1
B.k>﹣1且k≠0
C.k≥﹣1且k≠0
D.k<1且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題的是( )
A.四邊形的外角和等于內(nèi)角和
B.對(duì)角線互相垂直的平行四邊形是菱形
C.矩形的四個(gè)角都是直角
D.相似三角形的周長(zhǎng)比等于相似比的平方
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com