【題目】如圖,已知拋物線x軸交于點A、B,與y軸分別交于點C,其中點,點,且.

1)求拋物線的解析式;

2)點P是線段AB上一動點,過PBCD,當面積最大時,求點P的坐標;

3)點M是位于線段BC上方的拋物線上一點,當恰好等于中的某個角時,求點M的坐標.

【答案】1;(2)當時,S最大,此時;(3)

【解析】

1)先根據(jù)射影定理求出點,設(shè)拋物線的解析式為:,將點代入求出,然后化為一般式即可;

2)過點Py軸的平行線交BC于點E,設(shè),用待定系數(shù)法分別求出直線BC,直線AC,直線PD的解析式,表示出點E,點D的坐標,然后根據(jù)三角形面積公式列出二次函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解即可;

3)分兩種情況求解:當時和當.

1,,

,.

,

由射影定理可得:,

,

設(shè)拋物線的解析式為:,將點代入上式得:

拋物線的解析式為:;

2)過點Py軸的平行線交BC于點E,設(shè)

設(shè),

代入得

,

,

,

同樣的方法可求

故可設(shè),把代入得,

聯(lián)立解得:

,

故當時,S最大,此時;

3)由題知,,

時,,

∴點C與點M關(guān)于對稱軸對稱,

時,過MF,過Fy軸的平行線,交x軸于G,交過M平行于x軸的直線于K,

∵∠BFM=BGF,

∴△MFK∽△FGB,

同理可證:,

,,

設(shè),則,

,代入,

解得

,或(舍去),

,

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】廬陽春風體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關(guān)系及成本如下表所示:

T

每件的售價/

每件的成本/

50

60

1)當甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;

2)若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數(shù)關(guān)系式;

3)在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線軸交于、兩點,與軸交于點,已知,

1)求拋物線的解析式;

2)如圖2,若點是直線上方的拋物線上一動點,過點軸的平行線交直線于點,作于點,當點的橫坐標為時,求的面積;

3)若點為拋物線上的一個動點,以點為圓心,為半徑作,當在運動過程中與直線相切時,求點的坐標(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線yx+3x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點AB

1)求拋物線解析式;

2)點Cm,0)在線段OA上(點C不與A,O點重合),CDOAAB于點D,交拋物線于點E,若DEAD,求m的值;

3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,BM,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:在平面直角坐標系中,拋物線)與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線之比稱為驚喜度(Degree of surprise),記作.

1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標 ,點坐標 ,驚喜四邊形屬于所學過的哪種特殊平行四邊形? , .

2)如果拋物線)沿直線翻折后所得驚喜線的驚喜度為1,求的值.

3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標為16,求的值并直接寫出驚喜度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某塑料廠生產(chǎn)一種家用塑料制品,它的成本是件,售價是件,年銷售量為萬件.為了獲得更好的效益,廠家準備拿出一定的資金做廣告.根據(jù)測算,若每年投入廣告費萬元,產(chǎn)品的年銷售量將是原銷售量的倍,且之間滿足,具體數(shù)量如下表:

(萬元)

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤(萬元)與廣告費用(萬元)的函數(shù)關(guān)系式,并計算每年投入的廣告費是多少萬元時,所獲得的利潤最大?

3)如果廠家希望年利潤(萬元)不低于萬元,請你幫助廠家確定廣告費的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的角平分線CD、BE相交于F,A90°,EGBC,且CGEGG,下列結(jié)論:①∠CEG2DCB②∠DFBCGE;③∠ADCGCDCA平分∠BCG.其中正確的結(jié)論是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點B(12,10),過點Bx軸的垂線,垂足為A.作y軸的垂線,垂足為C.點DO出發(fā),沿y軸正方向以每秒1個單位長度運動;點EO出發(fā),沿x軸正方向以每秒3個單位長度運動;點FB出發(fā),沿BA方向以每秒2個單位長度運動.當點E運動到點A時,三點隨之停止運動,運動過程中△ODE關(guān)于直線DE的對稱圖形是△O′DE,設(shè)運動時間為t

1)用含t的代數(shù)式分別表示點E和點F的坐標;

2)若△ODE與以點AE,F為頂點的三角形相似,求t的值;

3)當t2時,求O′點在坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在O內(nèi)有折線DABC,點B,CO上,DA過圓心O,其中OA8,AB12,∠A=∠B60°,則BC_____

查看答案和解析>>

同步練習冊答案