【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙OAB兩點,CD切⊙O于點E,ADCD相交于D,BCCD相交于C,連結(jié)OD、OE、OC,對于下列結(jié)論:

AD+BC=CD;②∠DOC=90°S梯形ABCD=CDOA;

其中結(jié)論正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】試題分析:根據(jù)切線的性質(zhì)可得:AD=DE,BC=CE,則AD+BC=DE+CE=CD,則①正確;根據(jù)題意可知:△AOD和△EOD全等,△BOC和△EOC全等,則∠DOC=90°,故②正確;梯形的面積=(AD+BC)·AB÷2=CD·AB÷2=CD·OA,則③錯誤;根據(jù)題意可知:△DOE和△DCO相似,則④正確,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,的垂直平分線交對角線于點,為垂足,連結(jié),則等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:

①b2﹣4c>0;②b+c=0;③2b+c+3=0;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0

其中正確的有( 。﹤

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABCD,MN分別交AB,CD于點EF,∠BEF與∠DFE的兩條平分線相交于點P1,∠BEP1與∠DFP1的兩條平分線相交于點P2,則∠P2的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點的坐標(biāo)為的坐標(biāo)為,點的坐標(biāo)為,點軸上,且點在點的右側(cè).

)求菱形的周長.

)若⊙沿軸向右以每秒個單位長度的速度平移,菱形沿軸向左以每秒個單位長度的速度平移,設(shè)菱形移動的時間為(秒),當(dāng)⊙相切,且切點為的中點時,連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點所在的直線的距離為時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個由小正方體組成的幾何體的左視圖和俯視圖.

該幾何體最少需要幾塊小正方體?最多可以有幾塊小正方體?

請畫出該幾何體的所有可能的主視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與坐標(biāo)軸分別交于點,與直線交于點是線段上的動點,連接,若是等腰三角形,則的長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“宏揚傳統(tǒng)文化,打造書香校園”活動中,學(xué)校計劃開展四項活動:“A:國學(xué)誦讀”,“B:演講”,“C:課本劇”,“D:書法”.每位同學(xué)必須且只能參加其中一項活動,學(xué)校為了了解學(xué)生的意愿,隨機調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計如圖所示:

(1) 此次一共抽取 名學(xué)生進行統(tǒng)計調(diào)查;扇形統(tǒng)計圖中,活動D所占圓心角為 °;

(2) 請補全條形統(tǒng)計圖;

(3) 學(xué)校共有720名學(xué)生希望參加活動A,試估算該校共有多少名學(xué)生.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點E,AEDE,∠1+2=90°,M、N分別是BA,CD延長線上的點,∠EAM和∠EDN的平分線交于點F,下列結(jié)論:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F為定值.其中結(jié)論正確的有(

A. 4B. 1C. 2D. 3

查看答案和解析>>

同步練習(xí)冊答案