【題目】計(jì)算下列各題

某廣告公司設(shè)計(jì)一幅周長(zhǎng)為16米的矩形廣告牌,廣告設(shè)計(jì)費(fèi)為每平方米2000元,設(shè)矩形一邊長(zhǎng)為,面積為平方米.

1)求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

2)設(shè)計(jì)費(fèi)能可以達(dá)到30000元嗎?為什么?

3)當(dāng)是多少米時(shí),設(shè)計(jì)費(fèi)最多?最多是多少元?

【答案】1, ;(2)設(shè)計(jì)費(fèi)能達(dá)到30000元;(3)當(dāng)4米時(shí),矩形的最大面積為16平方米,設(shè)計(jì)費(fèi)最多,最多是32000.

【解析】

1)用8-x表示另一邊,即可列式求之間的函數(shù)關(guān)系式;

2)能,由2000S=30000,求出x即方程有解且符合題意;

3)配方為頂點(diǎn)式解析式,即可確定答案.

解:(1)矩形的一邊長(zhǎng)為米,周長(zhǎng)為16.另一邊長(zhǎng)為米,

,其中

2)能.

理由是:∵設(shè)計(jì)費(fèi)為每平方米2000元,∴2000S=30000

∴面積為:(平方米)

,解得;

∴設(shè)計(jì)費(fèi)能達(dá)到30000元;

3)∵,

∴當(dāng)時(shí),,.

∴當(dāng)4米時(shí),矩形的最大面積為16平方米,設(shè)計(jì)費(fèi)最多,最多是32000.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)ya(x1)2+4的圖象經(jīng)過(guò)點(diǎn)(10)

(1)求這個(gè)二次函數(shù)的解析式;

(2)判斷這個(gè)二次函數(shù)的開口方向,對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A60°,AB2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓內(nèi)接四邊形中,,,,則四邊形的面積為(

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝店出售某品牌的棉衣,進(jìn)價(jià)為100/件,當(dāng)售價(jià)為150/件時(shí),平均每天可賣30件;為了增加利潤(rùn)和減少庫(kù)存,商店決定降價(jià)銷售.經(jīng)調(diào)査,每件每降價(jià)1元,則每天可多賣2.

1)若每件降價(jià)20元,則平均每天可賣______.

2)現(xiàn)要想平均每天獲利2000元,且讓顧客得到實(shí)惠,求每件棉衣應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長(zhǎng)分別為m、4mDAB的中點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、點(diǎn)D

1)當(dāng)m1時(shí),求拋物線y=﹣x2+bx+c的函數(shù)關(guān)系式;

2)延長(zhǎng)BC至點(diǎn)E,連接OE,若OD平分∠AOE,拋物線與線段CE相交,求拋物線的頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),某數(shù)學(xué)活動(dòng)小組經(jīng)探究發(fā)現(xiàn):在⊙O中,直徑AB與弦CD相交于點(diǎn)P,此時(shí)PA· PB=PC·PD

1)如圖(2),若ABCD相交于圓外一點(diǎn)P, 上面的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

2)如圖(3,PD繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)至與⊙O相切于點(diǎn)C, 直接寫出PA、PB、PC之間的數(shù)量關(guān)系.

3)如圖(3),直接利用(2)的結(jié)論,求當(dāng) PC= ,PA=1時(shí),陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊ABBC上,且AE=BF=1,CEDF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,中,正確的有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案