【題目】如圖,點(diǎn)P是的角平分線OC上一點(diǎn),PNOB于點(diǎn)N,點(diǎn)M是線段ON上一點(diǎn),已知OM=3,ON=4,點(diǎn)D為OA上一點(diǎn),若滿足PD=PM,則OD的長度為________
【答案】3或5
【解析】
過點(diǎn)P作PE⊥OA于點(diǎn)E,分點(diǎn)D在線段OE上,點(diǎn)D在射線EA上兩種情況討論,利用角平分線的性質(zhì)可得PN=PE,即可求OE=ON=4,由題意可證△PMN≌△PDE,可求OD的長.
如圖:過點(diǎn)P作PE⊥OA于點(diǎn)E
∵OC平分∠AOB,PE⊥OA,PN⊥OB
∴PE=PN
∵PE=PN,OP=OP
∴△OPE≌△OPN(HL)
∴OE=ON=4
∵OM=3,ON=4
∴MN=1
若點(diǎn)D在線段OE上,
∵PM=PD,PE=PN
∴△PMN≌△PDE(HL)
∴DE=MN=1
∴OD=OE-DE=3
若點(diǎn)D在射線EA上,
∵PM=PD,PE=PN
∴△PMN≌△PDE(HL)
∴DE=MN=1
∴OD=OE+DE=5
故答案為3或5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運(yùn)動員進(jìn)行射擊比賽,兩人在相同條件下,各射擊10次,射擊的成績?nèi)鐖D所示.根據(jù)統(tǒng)計(jì)圖信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | 8 | b | 8 | s2 |
乙 | a | 7 | c | 0.6 |
(1)補(bǔ)充表格中a,b,c的值,并求甲的方差s2;
(2)運(yùn)用表中的四個統(tǒng)計(jì)量,簡要分析這兩名運(yùn)動員的射擊成績,若選派其中一名參賽,你認(rèn)為應(yīng)選哪名運(yùn)動員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組借助無人飛機(jī)航拍校園.如圖,無人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為4米/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點(diǎn)E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點(diǎn)E作EF丄AE,交BC于點(diǎn)F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點(diǎn)P在矩形ABCD的邊AD上(點(diǎn)P不與點(diǎn)A、D重合),連接PE,過點(diǎn)E作EF⊥PE,交BC于點(diǎn)F,連接PF.求證:△PDE和△ECF相似;
(3)應(yīng)用:如圖③,若EF交AB于點(diǎn)F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(5, 0), B(0, 5), C(2, 0),連AB
(1)如圖2,D為第一象限內(nèi)一點(diǎn),CDBC于點(diǎn)C,ADAB于點(diǎn)A,求點(diǎn)D坐標(biāo);
(2)E為軸負(fù)半軸上一動點(diǎn),連BE,在軸下方做EFBE于點(diǎn)E,并且EF=BE,連FC,直接寫出當(dāng)CF最短時點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DM、EN分別垂直平分AC和BC,交AB于M、N兩點(diǎn),DM與EN相交于點(diǎn)F.
(1)若△CMN的周長為15cm,求AB的長;
(2)若∠MFN=70°,求∠MCN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)停車難已成為合肥城市病之一,主要表現(xiàn)在居住停車位不足,停車資源結(jié)構(gòu)性失衡,中心城區(qū)供需差距大等等.如圖是張老師的車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,已知小汽車車門寬AO為 1.2 米,當(dāng)車門打開角度∠AOB為40°時,車門是否會碰到墻?請說明理由.(參考數(shù)據(jù):sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,BD和CD為⊙O的切線,切點(diǎn)分別為B和C.
(1)求證:AC∥OD;
(2)當(dāng)BC=BD,且BD=6cm時,求圖中陰影部分的面積(結(jié)果不取近似值).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com