【題目】綜合與實(shí)踐

問題情境:如圖1,在數(shù)學(xué)活動(dòng)課上,老師讓同學(xué)們畫了等腰RtABC和等腰RtADE,并連接CE,BD

操作發(fā)現(xiàn):(1)當(dāng)?shù)妊?/span>RtADE繞點(diǎn)A旋轉(zhuǎn),如圖2,勤奮小組發(fā)現(xiàn)了:

①線段CE與線段BD之間的數(shù)量關(guān)系是   

②直線CE與直線BD之間的位置關(guān)系是   

類比思考:(2)智慧小組在此基礎(chǔ)上進(jìn)行了深入思考,如圖3,若ABCADE都為直角三角形,∠BAC=∠DAE90°,且AC2AB,AE2AD,請(qǐng)你寫出CEBD的數(shù)量關(guān)系和位置關(guān)系,并加以證明.

拓展應(yīng)用:(3)創(chuàng)新小組在(2)的基礎(chǔ)上,又作了進(jìn)一步拓展研究,當(dāng)點(diǎn)E在直線AB上方時(shí),若DEAB,且AB,AD1,其他條件不變,試求出線段CE的長.(直接寫出結(jié)論)

【答案】1EC=BD; BDEC;(2) CE2BD,CEBD.理由見解析;(34.

【解析】

1)如圖2中,延長BDAC于點(diǎn)O,交ECH.證明EAC≌△DABSAS),即可解決問題.

2)結(jié)論:CE2BD,CEBD.如圖3中,延長BDAC于點(diǎn)O,交EC于點(diǎn)H.證明ABD∽△ACE,即可解決問題.

3)如圖4中,當(dāng)DEAB時(shí),設(shè)DEACH,易證ACDE.求出EHCH,理由勾股定理即可解決問題.

1)如圖2中,延長BDAC于點(diǎn)O,交ECH

AEADACAB,∠EAD=∠CAB90°,

∴∠EAC=∠DAB

∴△EAC≌△DABSAS),

ECBD,∠ECA=∠ABD,

∵∠ABD+AOB90°,∠AOB=∠COH,

∴∠ECA+COH90°

∴∠CHO90°,

BDEC

故答案為ECBD,BDEC

2)結(jié)論:CE2BD,CEBD

理由:如圖3中,延長BDAC于點(diǎn)O,交EC于點(diǎn)H

∵∠BAC=∠DAE,

∴∠BAD=∠CAE,

AC2AB,AE2AD

,

∴△ABD∽△ACE,

,

CE2BD,∠ABD=∠ACE,

∵∠ABD+AOB90°,∠AOB=∠COH

∴∠ECA+COH90°,

∴∠CHO90°,

BDEC

3)如圖4中,當(dāng)DEAB時(shí),設(shè)DEACH,易證ACDE

AE2AD,AD1,

AE2,DE,

AC2ABAB,

CHACAH,

RtECH中,EC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年中國北京世界園藝博覽會(huì)(以下簡稱世園會(huì)”)429日至107日在北京延慶區(qū)舉行.世園會(huì)為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:解密世園會(huì)、愛我家,愛園藝、園藝小清新之旅快速車覽之旅.李欣和張帆都計(jì)劃暑假去世園會(huì),他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.

(1)李欣選擇線路園藝小清新之旅的概率是多少?

(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,PBA延長線上一點(diǎn),過點(diǎn)P作⊙O的切線,切點(diǎn)為D,連接BD,過點(diǎn)B作射線PD的垂線,垂足為C

1)求證:BD平分∠ABC;

2)如果AB6sinCBD,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,FAD的中點(diǎn),ECD上一點(diǎn),∠FBE45°,則tanFEB的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接國慶節(jié),某工廠生產(chǎn)一種火爆的紀(jì)念商品,每件商品成本25元,工廠將該商品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.

1)求的函數(shù)解析式(也稱關(guān)系式).

2)若一次性批發(fā)量超過20且不超過50件時(shí),求獲得的利潤的函數(shù)關(guān)系式,同時(shí)求當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, 點(diǎn)的中點(diǎn),點(diǎn)上,且若在此矩形上存在一點(diǎn),使得是等腰三角形,則點(diǎn)的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路,快車和慢車分別從甲、乙兩地同時(shí)出發(fā),沿這條公路勻速相向而行,快車到達(dá)乙地后停止行駛,慢車到達(dá)甲地后停止行駛,已知快車速度為.下圖為兩車之間的距離與慢車行駛時(shí)間的部分函數(shù)圖像.

1)甲、乙兩地之間的距離是______km

2)點(diǎn)的坐標(biāo)為(4,____),解釋點(diǎn)的實(shí)際意義.

3)根據(jù)題意,補(bǔ)全函數(shù)圖像(標(biāo)明必要的數(shù)據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一種簡易臺(tái)燈,在其結(jié)構(gòu)圖(2)中燈座為ABCBC伸出部分不計(jì)),A、CD在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長為40cm,燈管DE長為15cm.(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27sin30°=0.5,cos30°=0.87,tan30°=0.58.)

1)求DE與水平桌面(AB所在直線)所成的角;

2)求臺(tái)燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).

查看答案和解析>>

同步練習(xí)冊(cè)答案