【題目】如圖,在以O為圓心的兩個同心圓中,AB經(jīng)過圓心O,且與小圓相交于點A,與大圓相交于點B.小圓的切線AC與大圓相交于點D,且CO平分∠ACB.
(1)試判斷BC所在直線與小圓的位置關系,并說明理由;
(2)試判斷線段AC、AD、BC之間的數(shù)量關系,并說明理由.
(3)若AB=8,BC=10,求大圓與小圓圍成的圓環(huán)的面積.
【答案】
(1)解:BC所在直線與小圓相切.
理由如下:
過圓心O作OE⊥BC,垂足為E;
∵AC是小圓的切線,AB經(jīng)過圓心O,
∴OA⊥AC;
又∵CO平分∠ACB,OE⊥BC,
∴OE=OA,
∴BC所在直線是小圓的切線
(2)解:AC+AD=BC.
理由如下:
連接OD.
∵AC切小圓O于點A,BC切小圓O于點E,
∴CE=CA;
∵在Rt△OAD與Rt△OEB中,
,
∴Rt△OAD≌Rt△OEB(HL),
∴EB=AD;
∵BC=CE+EB,
∴BC=AC+AD
(3)解:∵∠BAC=90°,AB=8cm,BC=10cm,
∴AC=6cm;
∵BC=AC+AD,
∴AD=BC﹣AC=4cm,
∵圓環(huán)的面積為:S=π(OD)2﹣π(OA)2=π(OD2﹣OA2),
又∵OD2﹣OA2=AD2,
∴S=42π=16π(cm2)
【解析】(1)只要證明OE垂直BC即可得出BC是小圓的切線,即與小圓的關系是相切.(2)利用全等三角形的判定得出Rt△OAD≌Rt△OEB,從而得出EB=AD,從而得到三者的關系是前兩者的和等于第三者.(3)根據(jù)大圓的面積減去小圓的面積即可得到圓環(huán)的面積.
【考點精析】利用直線與圓的三種位置關系和扇形面積計算公式對題目進行判斷即可得到答案,需要熟知直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E是邊AD的中點,EC交對角線于點F,若S△DEC=9,則S△BCF=( )
A.6
B.8
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.
(1)求購買一個籃球、一個足球各需多少元?
(2)若體育老師帶了6000元去購買這種籃球與足球共80個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠CAB=30°,AB=10,點D在線段AB上,AD=2.點P,Q以相同的速度從D點同時出發(fā),點P沿DB方向運動,點Q沿DA方向到點A后立刻以原速返回向點B運動.以PQ為直徑構造⊙O,過點P作⊙O的切線交折線AC﹣CB于點E,將線段EP繞點E順時針旋轉60°得到EF,過F作FG⊥EP于G,當P運動到點B時,Q也停止運動,設DP=m.
(1)當2<m≤8時,AP=,AQ=.(用m的代數(shù)式表示)
(2)當線段FG長度達到最大時,求m的值;
(3)在點P,Q整個運動過程中, ①當m為何值時,⊙O與△ABC的一邊相切?
②直接寫出點F所經(jīng)過的路徑長是.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家蔬菜公司收購到某種綠色蔬菜140噸,準備加工后進行銷售,銷售后獲利情況如表所示:
銷售方式 | 粗加工后銷售 | 精加工后銷售 |
每噸獲利(元) | 1000 | 2000 |
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進行.受季節(jié)等條件的限制,公司必須在一定時間內(nèi)將這批蔬菜全部加工后銷售完.
(1)如果要求12天剛好加工完140噸蔬菜,則公司應安排幾天精加工,幾天粗加工?
(2)如果先進行精加工,然后進行粗加工. ①試求出銷售利潤W元與精加工的蔬菜噸數(shù)m之間的函數(shù)關系式;
②若要求在不超過10天的時間內(nèi),將140噸蔬菜全部加工完后進行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將OA2B2變換成△OA3B3;已知變換過程中各點坐標分別為A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將△OA3B3變換成△OA4B4,則A4的坐標為 ,B4的坐標為 .
(2)按以上規(guī)律將△OAB進行n次變換得到△OAnBn,則An的坐標為 ,Bn的坐標為 ;
(3)△OAnBn的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AD的延長線與BC的延長線相交于點E,DC=DE.
(1)求證:∠A=∠AEB;
(2)如果DC⊥OE,求證:△ABE是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,O為菱形ABCD的對稱中心,已知C(2,0),D(0,﹣1),N為線段CD上一點(不與C、D重合).
(1)求以C為頂點,且經(jīng)過點D的拋物線解析式;
(2)設N關于BD的對稱點為N1 , N關于BC的對稱點為N2 , 求證:△N1BN2∽△ABC;
(3)求(2)中N1N2的最小值;
(4)過點N作y軸的平行線交(1)中的拋物線于點P,點Q為直線AB上的一個動點,且∠PQA=∠BAC,求當PQ最小時點Q坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com