【題目】如圖,所有小正方形的邊長都為1,AB、C都在格點上.

1)過點C畫直線AB的平行線(不寫畫法,下同);

2)過點A畫直線BC的垂線,并注明垂足為G;過點A畫直線AB的垂線,交BC于點H

3)線段_____的長度是點A到直線BC的距離;

4)線段AG、AH的大小關(guān)系為AG_____AH.(填“>”或“<”或“=”),理由________

【答案】1)見解析;(2)見解析;(3AG;(4<.

【解析】

根據(jù)網(wǎng)格結(jié)構(gòu)特點,過點A沿格線作BC平行線即可;(2)根據(jù)網(wǎng)格結(jié)構(gòu)特點作出即可;(3)根據(jù)點到直線的距離的定義解答;(4)結(jié)合圖形直接進行判斷即可得解.

1)如圖,AD即為所求,

2)如圖,AG、AH即為所求,

3)∵AGBC的垂線段,

∴線段AG的長度是點A到直線BC的距離;

故答案為:AG

4)∵AGBC的垂線段,

AG<AH

故答案為:<

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點M的坐標為(x1,y1),點N的坐標為(x2,y2),且x1≠x2,y1≠y2,以MN為邊構(gòu)造菱形,若該菱形的兩條對角線分別平行于x軸,y軸,則稱該菱形為邊的“坐標菱形”.

(1)已知點A(2,0),B(0,2),則以AB為邊的“坐標菱形”的最小內(nèi)角為   

(2)若點C(1,2),點D在直線y=5上,以CD為邊的“坐標菱形”為正方形,求直線CD 表達式;

(3)⊙O的半徑為,點P的坐標為(3,m).若在O上存在一點Q,使得以QP為邊的“坐標菱形”為正方形,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.

(1)求證:AGE≌△BGF;

(2)試判斷四邊形AFBE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】江南農(nóng)場收割小麥,已知1臺大型收割機和3臺小型收割機1小時可以收割小麥1.4公頃,2臺大型收割機和5臺小型收割機1小時可以收割小麥2.5公頃.

(1)每臺大型收割機和每臺小型收割機1小時收割小麥各多少公頃?

(2)大型收割機每小時費用為300元,小型收割機每小時費用為200元,兩種型號的收割機一共有10臺,要求2小時完成8公頃小麥的收割任務,且總費用不超過5400元,有幾種方案?請指出費用最低的一種方案,并求出相應的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG邊長分別為ab,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正確結(jié)論有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1:y=-2x與直線l2:y=kx+b在同一平面直角坐標系內(nèi)交于點P .

(1)直接寫出不等式-2x>kx+b 的解集 ;

(2)設直線l2 x 軸交于點A ,OAP的面積為12 ,求l2的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為弘揚中華傳統(tǒng)文化,了解學生整體聽寫能力,某校組織全校1000名學生進行一次漢字聽寫大賽初賽,從中抽取部分學生的成績進行統(tǒng)計分析,根據(jù)測試成績繪制出了頻數(shù)分布表和頻數(shù)分布直方圖:

分組/

頻數(shù)

頻率

50x60

6

0.12

60x70

a

0.28

70x80

16

0.32

80x90

10

0.20

90x100

c

b

合計

50

1.00

1)表中的a=______,b=______,c=______;

2)把上面的頻數(shù)分布直方圖補充完整,并畫出頻數(shù)分布折線圖;

3)如果成績達到9090分以上者為優(yōu)秀,可推薦參加進入決賽,那么請你估計該校進入決賽的學生大約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(m,6),B(n,1)在反比例函數(shù)y=的圖象上,ADx軸于點D,BCx軸于點C,點ECD上,CD=5,ABE的面積為10,則點E的坐標是( 。

A. (3,0) B. (4,0) C. (5,0) D. (6,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使三角形AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( 。

A. 80° B. 90° C. 100° D. 130°

查看答案和解析>>

同步練習冊答案