【題目】某社區(qū)決定把一塊長,寬的矩形空地建成居民健身廣場,設計方案如圖,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為大小、形狀都相同的矩形),空白區(qū)域為活動區(qū),且四周的4個出口寬度相同,其寬度不小于,不大于,設綠化區(qū)較長邊為,活動區(qū)的面積為.為了想知道出口寬度的取值范圍,小明同學根據(jù)出口寬度不小于,算出.
(1)求與的函數(shù)關(guān)系式并直接寫出自變量的取值范圍;
(2)求活動區(qū)的最大面積;
(3)預計活動區(qū)造價為50元/,綠化區(qū)造價為40元/,若社區(qū)的此項建造投資費用不得超過72000元,求投資費用最少時活動區(qū)的出口寬度?
【答案】(1);(2)活動區(qū)的最大面積為;(3)投資最少時活動區(qū)的出口寬度為.
【解析】
(1)根據(jù)“活動區(qū)域的面積=矩形區(qū)域的面積-綠化區(qū)域的面積”可得y與x的關(guān)系式;
(2)根據(jù)二次函數(shù)的增減性可得結(jié)論;
(3)根據(jù)題意列方程即可得到結(jié)論.
(1)根據(jù)題意得,,
∴;
(2),
∵,拋物線的開口向下,當時,隨的增大而減小,
∴當時,,
答:活動區(qū)的最大面積為;
(3)設投資費用為元,
由題意得, ,
∴當時,解得:(不符合題意舍去),,
∵,
∴當時,,
又∵,
∴.
∴當時,投資費用最少,此時出口寬度為,
答:投資最少時活動區(qū)的出口寬度為.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0;②a-b+c<0;③2a=b;④4a+2b+c>0;⑤若點(-2,y1)和(-,y2)在該圖象上,則y1>y2. 其中正確的結(jié)論個數(shù)是 ( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),則y1、y2、y3的大小關(guān)系是( ).
A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線 (k>0)和x軸上,已知點B1(1,1),B2(3,2),則Bn的坐標是__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(8,0),sin∠ABO=,拋物線經(jīng)過點O、A,且頂點在△AOB的外接圓上,則此拋物線的表達式為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90,AB=10cm,AC=8cm,點P從點A開始出發(fā)向點C以2cm/s的速度移動,點Q從B點出發(fā)向點C以1cm/s的速度移動,若P、Q分別同時從A,B出發(fā),幾秒后四邊形APQB是△ABC面積的
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A是半徑為2的⊙O外的一點,OA=4,AB切⊙O于點B,弦BC∥OA,連接AC,則圖中陰影部分的面積為___________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】秋風送爽,學校組織同學們?nèi)ヮU和園秋游,昆明湖西堤六橋中的玉帶橋最是令人喜愛,如圖所示,玉帶橋的橋拱是拋物線形水面寬度AB=10m,橋拱最高點C到水面的距離為6m.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担髵佄锞的表達式;
(2)現(xiàn)有一艘游船高度是4.5m,寬度是4m,為了保證安全,船頂距離橋拱頂部至少0.5m,通過計算說明這艘游船能否安全通過玉帶橋.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com