精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點E,FDC的中點,連結EF、BF,下列結論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB④∠CFE=3DEF,其中正確結論的個數共有( ).

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

如圖延長EFBC的延長線于G,取AB的中點H連接FH.證明DFE≌△FCG EF=FG,BEBG,四邊形BCFH是菱形即可解決問題;

如圖延長EFBC的延長線于G,取AB的中點H連接FH.

CD=2AD,DF=FC,

CF=CB,

∴∠CFB=CBF,

CDAB,

∴∠CFB=FBH,

∴∠CBF=FBH,

∴∠ABC=2ABF.故①正確,

DECG,

∴∠D=FCG,

DF=FC,DFE=CFG,

∴△DFE≌△FCG,

FE=FG,

BEAD,

∴∠AEB=90°,

ADBC,

∴∠AEB=EBG=90°,

BF=EF=FG,故②正確,

SDFE=SCFG,

S四邊形DEBC=SEBG=2SBEF,故③正確,

AH=HB,DF=CF,AB=CD,

CF=BH,CFBH,

∴四邊形BCFH是平行四邊形,

CF=BC,

∴四邊形BCFH是菱形,

∴∠BFC=BFH,

FE=FB,FHAD,BEAD,

FHBE,

∴∠BFH=EFH=DEF,

∴∠EFC=3DEF,故④正確,

故選:D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN

求證:

分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數量關系不需證明;

如圖4,當時,證明:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).

(1)求拋物線的函數表達式;
(2)若點P在拋物線上,且SAOP=4SBOC , 求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,對于點,我們把點叫做點的衍生點.已知點的衍生點為,點的衍生點為,點的衍生點為這樣依次得到點若點的坐標為,若點在第四象限,則范圍分別為______________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,、分別平分,則________,若、分別平分,的外角平分線,則________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC , BD相交于點O , 且AC=6cm,BD=8cm,動點P , Q分別從點B , D同時出發(fā),運動速度均為1cm/s,點P沿BCD運動,到點D停止,點Q沿DOB運動,到點O停止1s后繼續(xù)運動,到點B停止,連接APAQ , PQ . 設△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點P的運動時間為x(s).

(1)填空:AB=cm,ABCD之間的距離為cm;
(2)當4≤x≤10時,求yx之間的函數解析式;
(3)直接寫出在整個運動過程中,使PQ與菱形ABCD一邊平行的所有x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,點A,B,C在⊙O上,P為 上一點,連接AP,CP,求∠P的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在銳角△ABC中,∠ABC=60°,BC=2cm,BD平分∠ABCAC于點D,點M,N分別是BDBC邊上的動點,則MN+MC的最小值是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,若BC=EC,BCE=ACD,則添加不能使ABC≌△DBC的條件是(

AAB=DE BB=E CAC=DC DA=D

查看答案和解析>>

同步練習冊答案