【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交AB于E、交AC于D,連接BD.
(1)若AB=AC,且△BCD的周長為18cm,△ABC的周長為30cm,求BE的長;
(2)若∠CBD=30°,試求△ABC三個角的度數(shù).
【答案】(1)BE=6cm;(2)∠A=40°,∠ABC=70°,∠C=70°.
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì)得到AD=DB,AE=BE,根據(jù)三角形的周長公式求出AB,即可得出結(jié)論;
(2)根據(jù)等腰三角形的性質(zhì)得到∠A=∠ABD=α,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算即可.
(1)∵DE是邊AB的垂直平分線,
∴AD=DB,AE=BE.
∵△BCD的周長為18cm,
∴AC+BC=AD+DC+BC=DB+DC+BC=AC+BC=18(cm).
∵△ABC的周長為30cm,
∴AB=30﹣(AC+BC)=30﹣18=12(cm),
∴BE=12÷2=6(cm);
(2)設(shè)∠A=α.
∵DA=DB,
∴∠A=∠ABD=α.
∵AB=AC,
∴∠C=∠ABC=α+30°,
由三角形的內(nèi)角和定理得:α+2(α+30°)=180°,
解得:α=40°,
∴∠A=40°,∠ABC=70°,∠C=70°.
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,三角形的內(nèi)心是三條角平分線的交點,過三角形內(nèi)心的一條直線與兩邊相交,兩交點之間的線段把這個三角形分成兩個圖形.若有一個圖形與原三角形相似,則把這條線段叫做這個三角形的“內(nèi)似線”.
(1)等邊三角形“內(nèi)似線”的條數(shù)為 ;
(2)如圖,△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求證:BD是△ABC的“內(nèi)似線”;
(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是△ABC的“內(nèi)似線”,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列條件中,不能判斷△ABC是直角三角形的是( )
A. a:b:c=3:4:5 B. ∠A:∠B:∠C=3:4:5
C. ∠A+∠B=∠C D. a:b:c=1:2:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市計劃購進一批甲、乙兩種玩具,已知4件甲種玩具的進價與2件乙種玩具的進價的和為230元,2件甲種玩具的進價與3件乙種玩具的進價的和為185元.
(1)求每件甲種、乙種玩具的進價分別是多少元;
(2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過20件,超出部分可以享受7折優(yōu)惠,若購進()件甲種玩具需要花費元,請你直接寫出與的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,平面直角坐標系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰Rt△ABC,∠CAB=90°,AB=AC.
(1)求C點坐標;
(2)如圖②過C點作CD⊥X軸于D,連接AD,求∠ADC的度數(shù);
(3)如圖③在(1)中,點A在Y軸上運動,以O(shè)A為直角邊作等腰Rt△OAE,連接EC,交Y軸于F,試問A點在運動過程中S△AOB:S△AEF的值是否會發(fā)生變化?如果沒有變化,請直接寫出它們的比值 (不需要解答過程或說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標.
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com