【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=﹣1,下列結(jié)論不正確的是( 。
A.b2>4acB.abc>0
C.a﹣c<0D.am2+bm≥a﹣b(m為任意實數(shù))
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標(biāo)為t.
①當(dāng)點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司招聘人才,對應(yīng)聘者分別進(jìn)行閱讀能力、思維能力和表達(dá)能力三項測試,其中甲、乙兩人的成績?nèi)缦卤恚▎挝唬悍郑?/span>
項目人員 | 閱讀能力 | 思維能力 | 表達(dá)能力 |
甲 | 93 | 86 | 73 |
乙 | 95 | 81 | 79 |
(1)根據(jù)實際需要,公司將閱讀、思維和表達(dá)能力三項測試得分按3:5:2的比確定每人的最后成績,若按此成績在甲、乙兩人中錄用一人,誰將被錄用?
(2)公司按照(1)中的成績計算方法,將每位應(yīng)聘者的最后成績繪制成如圖所示的頻數(shù)分布直方圖(每組分?jǐn)?shù)段均包含左端數(shù)值,不包含右端數(shù)值,如最右邊一組分?jǐn)?shù)x為:85≤x<90),并決定由高分到低分錄用8名員工,甲、乙兩人能否被錄用?請說明理由,并求出本次招聘人才的錄用率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,∠C=90°,AC=BC,點O在AB上,以O為圓心,OA為半徑作⊙O,與BC相切于點D,且交AB于點E.
(1)連結(jié)AD,求證:AD平分∠CAB;
(2)若BE=﹣1,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點,交y軸于點C,AB=4,對稱軸是直線x=﹣1.
(1)求拋物線的解析式及點C的坐標(biāo);
(2)連接AC,E是線段OC上一點,點E關(guān)于直線x=﹣1的對稱點F正好落在AC上,求點F的坐標(biāo);
(3)動點M從點O出發(fā),以每秒2個單位長度的速度向點A運動,到達(dá)點A即停止運動,過點M作x軸的垂線交拋物線于點N,交線段AC于點Q.設(shè)運動時間為t(t>0)秒.
①連接BC,若△BOC與△AMN相似,請直接寫出t的值;
②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新學(xué)期開始時,某校九年級一班的同學(xué)為了增添教室綠色文化,打造溫馨舒適的學(xué)習(xí)環(huán)境,準(zhǔn)備到一家植物種植基地購買A、B兩種花苗.據(jù)了解,購買A種花苗3盆,B種花苗5盆,則需210元;購買A種花苗4盆,B種花苗10盆,則需380元.
(1)求A、B兩種花苗的單價分別是多少元?
(2)經(jīng)九年級一班班委會商定,決定購買A、B兩種花苗共12盆進(jìn)行搭配裝扮教室.種植基地銷售人員為了支持本次活動,為該班同學(xué)提供以下優(yōu)惠:購買幾盆B種花苗,B種花苗每盆就降價幾元,請你為九年級一班的同學(xué)預(yù)算一下,本次購買至少準(zhǔn)備多少錢?最多準(zhǔn)備多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是用黑色棋子擺成的美麗圖案,按照這樣的規(guī)律擺下去,第10個這樣的圖案需要黑色棋子的個數(shù)為( )
A.148B.152C.174D.202
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價600元/張,每次憑卡不再收費.
②銀卡售價150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時,所需總費用為y元.
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中,若三種消費方式對應(yīng)的函數(shù)圖象如圖所示,請求出點A、B、C的坐標(biāo);
(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過點A、B、C.
(1)求拋物線的解析式;
(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標(biāo)為t,
①設(shè)拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求出當(dāng)△CEF與△COD相似時,點P的坐標(biāo);
②是否存在一點P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com