【題目】如圖,AB是⊙O的一條弦,E是AB的中點(diǎn),過點(diǎn)E作EC⊥OA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.
(1)求證:DB=DE;
(2)若AB=12,BD=5,求⊙O的半徑.

【答案】
(1)證明:∵AO=OB,

∴∠OAB=∠OBA,

∵BD是切線,

∴OB⊥BD,

∴∠OBD=90°,

∴∠OBE+∠EBD=90°,

∵EC⊥OA,

∴∠CAE+∠CEA=90°,

∵∠CEA=∠DEB,

∴∠EBD=∠BED,

∴DB=DE


(2)作DF⊥AB于F,連接OE.

∵DB=DE,AE=EB=6,

∴EF= BE=3,OE⊥AB,

在Rt△EDF中,DE=BD=5,EF=3,

∴DF= =4,

∵∠AOE+∠A=90°,∠DEF+∠A=90°,

∴∠AOE=∠DEF,

∴sin∠DEF=sin∠AOE= =

∵AE=6,

∴AO=

∴⊙O的半徑為


【解析】(1)欲證明DB=DE,只要證明∠DEB=∠DBE;(2)作DF⊥AB于F,連接OE.只要證明∠AOE=∠DEF,可得sin∠DEF=sin∠AOE= = ,由此求出AE即可解決問題.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為30°,測得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (x>0)的圖象交于點(diǎn)A(m,3)和B(3,1).
(1)填空:一次函數(shù)的解析式為 , 反比例函數(shù)的解析式為;
(2)點(diǎn)P是線段AB上一點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,連接OP,若△POD的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩個(gè)施工隊(duì)在六安(六盤水﹣安順)城際高鐵施工中,每天甲隊(duì)比乙隊(duì)多鋪設(shè)100米鋼軌,甲隊(duì)鋪設(shè)5天的距離剛好等于乙隊(duì)鋪設(shè)6天的距離.若設(shè)甲隊(duì)每天鋪設(shè)x米,乙隊(duì)每天鋪設(shè)y米.
(1)依題意列出二元一次方程組;
(2)求出甲乙兩施工隊(duì)每天各鋪設(shè)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,M、N分別為AC,BC的中點(diǎn).若S△CMN=1,則S四邊形ABNM=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中的點(diǎn)P和圖形M,給出如下的定義:若在圖形M上存在一點(diǎn)Q,使得P、Q兩點(diǎn)間的距離小于或等于1,則稱P為圖形M的關(guān)聯(lián)點(diǎn).
(1)當(dāng)⊙O的半徑為2時(shí),
①在點(diǎn)P1 ,0),P2 , ),P3 ,0)中,⊙O的關(guān)聯(lián)點(diǎn)是
②點(diǎn)P在直線y=﹣x上,若P為⊙O的關(guān)聯(lián)點(diǎn),求點(diǎn)P的橫坐標(biāo)的取值范圍.
(2)⊙C的圓心在x軸上,半徑為2,直線y=﹣x+1與x軸、y軸交于點(diǎn)A、B.若線段AB上的所有點(diǎn)都是⊙C的關(guān)聯(lián)點(diǎn),直接寫出圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點(diǎn)A(1,a),B是反比例函數(shù)圖象上一點(diǎn),直線OB與x軸的夾角為α,tanα=
(1)求k的值.
(2)求點(diǎn)B的坐標(biāo).
(3)設(shè)點(diǎn)P(m,0),使△PAB的面積為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“420”雅安地震后,某商家為支援災(zāi)區(qū)人民,計(jì)劃捐贈(zèng)帳篷16800頂,該商家備有2輛大貨車、8輛小貨車運(yùn)送帳篷.計(jì)劃大貨車比小貨車每輛每次多運(yùn)帳篷200頂,大、小貨車每天均運(yùn)送一次,兩天恰好運(yùn)完.
(1)求大、小貨車原計(jì)劃每輛每次各運(yùn)送帳篷多少頂?
(2)因地震導(dǎo)致路基受損,實(shí)際運(yùn)送過程中,每輛大貨車每次比原計(jì)劃少運(yùn)200m頂,每輛小貨車每次比原計(jì)劃少運(yùn)300頂,為了盡快將帳篷運(yùn)送到災(zāi)區(qū),大貨車每天比原計(jì)劃多跑 m次,小貨車每天比原計(jì)劃多跑m次,一天恰好運(yùn)送了帳篷14400頂,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙C過原點(diǎn),且與兩坐標(biāo)軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)A的坐標(biāo)為(0,3),M是第三象限內(nèi) 上一點(diǎn),∠BMO=120°,則⊙C的半徑長為(

A.6
B.5
C.3
D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案