【題目】如圖,四邊形ABCD中,AB=30,AD=48,BC=14,CD=40,∠ABD+BDC=90°,ABCD的面積為____

【答案】936

【解析】

作∠ABD=A′DB,AB=A′D,連接A′C,進(jìn)而得出∠A′DB+BDC=90°,利用勾股定理得出A′C的長,再利用勾股定理的逆定理得出△BCA′是直角三角形,即可得出四邊形ABCD的面積.

作∠ABD=A′DB,AB=A′D,連接A′C,


∵∠ABD+BDC=90°
∴∠A′DB+BDC=90°,
AB=30,CD=40,
A′C==50,
AD=48,BC=14,
AD2+BC2=2500,
AD2+BC2=A′C2,
∴△BCA′是直角三角形,
∴四邊形ABCD的面積為:

×30×40+×14×48=936
故答案為:936

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司有A,BC三種貨車若干輛,A,B,C每輛貨車的日運(yùn)貨量之比為123,為應(yīng)對(duì)雙11物流高峰,該公司重新調(diào)配了這三種貨車的數(shù)量,調(diào)配后,B貨車數(shù)量增加一倍,A,C貨車數(shù)量各減少50%,三種貨車日運(yùn)貨總量增加25%,按調(diào)配后的運(yùn)力,三種貨車在本地運(yùn)完一堆貨物需要t天,但A,C兩種貨車運(yùn)了若干天后全部被派往外地執(zhí)行其它任務(wù),剩下的貨物由B貨車運(yùn)完,運(yùn)輸總時(shí)間比原計(jì)劃多了4天,且B貨車運(yùn)輸時(shí)間剛好為A,C兩種貨車在本地運(yùn)輸時(shí)間的6倍,則B貨車共運(yùn)了______天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E,F(xiàn)分別是ABCD的邊BC,AD上的中點(diǎn),且∠BAC=90°,若∠B=30°,BC=10,則四邊形AECF的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖中的A型、B型、C型矩形紙片分別放在3個(gè)盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這3個(gè)盒子裝入一只不透明的袋子中.

(1)攪勻后從中摸出1個(gè)盒子,求摸出的盒子中是型矩形紙片的概率;

(2)攪勻后先從中摸出1個(gè)盒子(不放回),再從余下的兩個(gè)盒子中摸出一個(gè)盒子,求2次摸出的盒子的紙片能拼成一個(gè)新矩形的概率(不重疊無縫隙拼接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為.

1)請(qǐng)用直尺(不帶刻度)和圓規(guī)作一條直線,它與軸和軸的正半軸分別交于點(diǎn)和點(diǎn),且關(guān)于直線對(duì)稱.(作圖不必寫作法,但要保留作圖痕跡.

2)請(qǐng)求出(1)中作出的直線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對(duì)A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.

(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?

(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若國家財(cái)政撥付資金不超過11800萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請(qǐng)問共有哪幾種改擴(kuò)建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 隨著新學(xué)校建成越來越多,絕大部分孩子已能就近入學(xué),某數(shù)學(xué)學(xué)習(xí)興趣小組對(duì)八年級(jí)(1)班學(xué)生上學(xué)的交通方式進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果畫出下列兩個(gè)不完整的統(tǒng)計(jì)圖(圖1、圖2).請(qǐng)根據(jù)圖中的信息完成下列問題.

1)該班參與本次問卷調(diào)查的學(xué)生共有多少人;

2)請(qǐng)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;

3)在圖2的扇形統(tǒng)計(jì)圖中,騎車所在扇形的圓心角的度數(shù)是多少度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的一條邊BC的長為5,另兩邊AB、AC的長是關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根。

1)求證:無論為何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根。

2為何值時(shí),△ABC是以BC為斜邊的直角三角形。

3為何值時(shí),△ABC是等腰三角形,并求△ABC的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+cx軸交于A,B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線y=a1x2+b1x+c1,則下列結(jié)論:①b>0;a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.其中正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案