當a=,b=9時,值為24的代數(shù)式是

[  ]

A.(3a+3)(b-1)

B.(3a+1)(b+1)

C.(3a+2)(b+1)

D.(3a+2)(b-1)

答案:D
解析:

a,b9時,(3a2)(b1)=(3×2)(91)=3×8=24

所以選D


練習冊系列答案
相關習題

科目:初中數(shù)學 來源:學習周報 數(shù)學 華師大七年級版 2009-2010學年 第11期 總第167期 華師大版 題型:044

小櫻在做練習時,遇到這樣的一道題:“當a=,b=1時,求多項式5a3+7a2b-3b3與-5a3-7a2b+2b3+1的和”.做完后,她指出題中所給的a的值是多余的,你認為小櫻的說法有道理嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

實踐與探究:

對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴

只有當a=b時,等號成立。

結(jié)論:在(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當a=b時,a+b有最小值。   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當m=       時,有最小值         

若m>0,只有當m=       時,2有最小值        .

(2)如圖,已知直線L1與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1

于點D,試求當線段CD最短時,點A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

實踐與探究:
對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴
只有當a=b時,等號成立。
結(jié)論:在(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當a=b時,a+b有最小值。  根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當m=      時,有最小值        ;
若m>0,只有當m=      時,2有最小值       .
(2)如圖,已知直線L1與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1
于點D,試求當線段CD最短時,點A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省江陰長涇片八年級下學期期中考試數(shù)學卷(帶解析) 題型:解答題

實踐與探究:
對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴
只有當a=b時,等號成立。
結(jié)論:在(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當a=b時,a+b有最小值。  根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當m=      時,有最小值        ;
若m>0,只有當m=      時,2有最小值       .
(2)如圖,已知直線L1與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1
于點D,試求當線段CD最短時,點A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆江蘇省江陰長涇片八年級下學期期中考試數(shù)學卷(解析版) 題型:解答題

實踐與探究:

對于任意正實數(shù)a、b,∵≥0, ∴≥0,∴

只有當a=b時,等號成立。

結(jié)論:在(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,只有當a=b時,a+b有最小值。   根據(jù)上述內(nèi)容,回答下列問題:

(1)若m>0,只有當m=       時,有最小值         ;

若m>0,只有當m=       時,2有最小值        .

(2)如圖,已知直線L1與x軸交于點A,過點A的另一直線L2與雙曲線相交于點B(2,m),求直線L2的解析式.

(3)在(2)的條件下,若點C為雙曲線上任意一點,作CD∥y軸交直線L1

于點D,試求當線段CD最短時,點A、B、C、D圍成的四邊形面積.

 

查看答案和解析>>

同步練習冊答案