【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+1x軸于點(diǎn)B,交y軸于點(diǎn)A,過點(diǎn)AAB1ABx軸于點(diǎn)B1,過點(diǎn)B1B1A1x軸交直線l于點(diǎn)A2依次作下去,則點(diǎn)Bn的橫坐標(biāo)為_____

【答案】

【解析】

根據(jù)直線的位置和一次函數(shù)圖像點(diǎn)的位置即可求出該題答案.

有直線l:y=x+1x軸于點(diǎn)B,交y軸于點(diǎn)A,可得A(0,1),B(-,0),

tanABO=,即∠ABO=30°,

BA=2AO=2,

又∵AB1ABx軸于點(diǎn)B1,AO=1,

AB1

RTBAB1中,BB1 ;

由題可得BA2,

A2B3 ,

RTBA2B3中,BB3 ,

以此類推,BBn=(n,

又∵BO=

OBn=(n,

∴點(diǎn)Bn的橫坐標(biāo)為(n,

故答案為:(n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B在拋物線L1(點(diǎn)A與點(diǎn)B不重合),我們把這樣的兩拋物線L1L2稱為伴隨拋物線,可見一條拋物線的伴隨拋物線可以有多條.

(1)拋物線L1y=-x24x3與拋物線L2伴隨拋物線,且拋物線L2的頂點(diǎn)B的橫坐標(biāo)為4,求拋物線L2的表達(dá)式;

(2)若拋物線ya1(xm)2n的任意一條伴隨拋物線的表達(dá)式為ya2(xh)2k,請(qǐng)寫出a1a2的關(guān)系式,并說明理由;

(3)在圖②中,已知拋物線L1ymx22mx3m(m>0)y軸相交于點(diǎn)C,它的一條伴隨拋物線L2,拋物線L2y軸相交于點(diǎn)D,若CD4m,求拋物線L2的對(duì)稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y =ax2+bx﹣3a≠0)與x軸交于點(diǎn)A﹣20)、B40)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)PQ分別是AB、BC上的動(dòng)點(diǎn),當(dāng)點(diǎn)PA點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)QB點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)PQ同時(shí)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2).

1)求拋物線的表達(dá)式;

2)設(shè)PBQ的面積為S ,當(dāng)t為何值時(shí),PBQ的面積最大,最大面積是多少?

3)當(dāng)t為何值時(shí),PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,ADAB,∠BAD的平分線交BC于點(diǎn)E,DHAE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DEBF于點(diǎn)O,下列結(jié)論:①△ABE≌△AHD;②HECE;③HBF的中點(diǎn);④ABHF;其中正確命題的個(gè)數(shù)為__________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1、l2交于點(diǎn)C.

(1)求直線l2的函數(shù)解析式;

(2)求ADC的面積;

(3)在直線l2上是否存在點(diǎn)P,使得ADP面積是ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出將△ABC向右平移 2個(gè)單位長(zhǎng)度后得到的△A1B1C1

(2)作出將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2;

(3)求在(2)的旋轉(zhuǎn)變換中,線段BC掃過區(qū)域的面積(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC,BDAC于點(diǎn)DCEAB于點(diǎn)E,CEBD交于點(diǎn)OAO的延長(zhǎng)線交BC于點(diǎn)F,則圖中全等的三角形有(

A.8對(duì)B.7對(duì)C.6對(duì)D.5對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A(3,0)、B(a,2)、C(0,m),D(n,0),且m2+n2=4,若E為CD中點(diǎn).則AB+BE的最小值為( 。

A. 3 B. 4 C. 5 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有一塊長(zhǎng)為30 m,寬為24 m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為480 m2,兩塊綠地之間及周邊有寬度相等的人行通道,則人行通道的寬度為________m.

查看答案和解析>>

同步練習(xí)冊(cè)答案