【題目】在校園手工制作活動(dòng)中,甲、乙兩人接到手工制作紙花任務(wù),已知甲每小時(shí)制作紙花比乙每小時(shí)制作紙花少20朵,甲制作120朵紙花的時(shí)間與乙制作160朵紙花的時(shí)間相同
(1)求甲、乙兩人每小時(shí)各制作紙花多少朵?
(2)本次活動(dòng)學(xué)校需要該種紙花不少于350朵,若由甲、乙兩人共同制作,則至少需要幾小時(shí)完成任務(wù)?
【答案】(1)甲每小時(shí)制作紙花60朵,每小時(shí)制作紙花80朵;(2)至少需要2.5小時(shí)完成任務(wù).
【解析】
(1)根據(jù)“甲制作120朵紙花的時(shí)間與乙制作160朵紙花的時(shí)間相同”列方程求解即可;
(2)根據(jù)“不少于350朵”列出不等式求解即可.
(1)設(shè)乙每小時(shí)制作紙花朵,根據(jù)題意,得
解得x=80
經(jīng)檢驗(yàn),x=80 是原方程的解.
,
∴甲每小時(shí)制作紙花60朵,每小時(shí)制作紙花80朵.
(2)設(shè)需要小時(shí)完成任務(wù),根據(jù)題意,得
解得y≥2.5
∴至少需要2.5小時(shí)完成任務(wù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若以一條線(xiàn)段為對(duì)角線(xiàn)作正方形,則稱(chēng)該正方形為這條線(xiàn)段的“對(duì)角線(xiàn)正方形”.例如,圖①中正方形ABCD即為線(xiàn)段BD的“對(duì)角線(xiàn)正方形”.如圖②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,點(diǎn)P從點(diǎn)C出發(fā),沿折線(xiàn)CA﹣AB以5cm/s的速度運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B不重合時(shí),作線(xiàn)段PB的“對(duì)角線(xiàn)正方形”,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s),線(xiàn)段PB的“對(duì)角線(xiàn)正方形”的面積為S(cm2).
(1)如圖③,借助虛線(xiàn)的小正方形網(wǎng)格,畫(huà)出線(xiàn)段AB的“對(duì)角線(xiàn)正方形”.
(2)當(dāng)線(xiàn)段PB的“對(duì)角線(xiàn)正方形”有兩邊同時(shí)落在△ABC的邊上時(shí),求t的值.
(3)當(dāng)點(diǎn)P沿折線(xiàn)CA﹣AB運(yùn)動(dòng)時(shí),求S與t之間的函數(shù)關(guān)系式.
(4)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)線(xiàn)段PB的“對(duì)角線(xiàn)正方形”至少有一個(gè)頂點(diǎn)落在∠A的平分線(xiàn)上時(shí),直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,AB=AC,∠ABC =,D是BC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°.
(1)直接寫(xiě)出∠ADE的度數(shù)(用含的式子表示);
(2)以AB,AE為邊作平行四邊形ABFE,
①如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD;
②如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課上,甲、乙兩個(gè)小組進(jìn)行定點(diǎn)投籃對(duì)抗賽,每組10人,每人投10次.下表是甲組成績(jī)統(tǒng)計(jì)表:
投進(jìn)個(gè)數(shù) | 10個(gè) | 8個(gè) | 6個(gè) | 4個(gè) |
人數(shù) | 1個(gè) | 5人 | 2人 | 2人 |
(1)請(qǐng)計(jì)算甲組平均每人投進(jìn)個(gè)數(shù);
(2)經(jīng)統(tǒng)計(jì),兩組平均每人投進(jìn)個(gè)數(shù)相同且乙組成的方差為3.2.若從成績(jī)穩(wěn)定性角度看,哪一組表現(xiàn)更好?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與直線(xiàn)y=x+3交x軸負(fù)半軸于點(diǎn)A,交y軸于點(diǎn)C,交x軸正半軸于點(diǎn)B.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)P為拋物線(xiàn)上任意一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為x.
①若點(diǎn)P在第二象限,過(guò)點(diǎn)P作PN⊥x軸于N,交直線(xiàn)AC于點(diǎn)M,求線(xiàn)段PM關(guān)于x的函數(shù)解析式,并求出PM的最大值;
②若點(diǎn)P是拋物線(xiàn)上任意一點(diǎn),連接CP,以CP為邊作正方形CPEF,當(dāng)點(diǎn)E落在拋物線(xiàn)的對(duì)稱(chēng)軸上時(shí),請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18℃的條件下生長(zhǎng)最快的新品種,如圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線(xiàn)的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=15時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線(xiàn);
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線(xiàn)與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線(xiàn);
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線(xiàn);
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線(xiàn)y=ax2+ax+b(a≠0)與直線(xiàn)y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線(xiàn)的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線(xiàn)與拋物線(xiàn)的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線(xiàn)y=﹣2x與拋物線(xiàn)在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線(xiàn)段GH沿y軸向上平移t個(gè)單位(t>0),若線(xiàn)段GH與拋物線(xiàn)有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對(duì)稱(chēng)軸交x軸于點(diǎn)Q.
(1)求拋物線(xiàn)對(duì)應(yīng)的二次函數(shù)的表達(dá)式;
(2)點(diǎn)P是拋物線(xiàn)的對(duì)稱(chēng)軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),且與直線(xiàn)CD相切,求點(diǎn)P的坐標(biāo);
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)S從點(diǎn)A出發(fā),沿線(xiàn)段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動(dòng)過(guò)程中速度不變,則以點(diǎn)B為圓心,線(xiàn)段BS長(zhǎng)為半徑的圓的面積m與點(diǎn)S的運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com