【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;③a-b+c>0;④當(dāng)x≠1時,a+b>ax2+bx:⑤4ac<b2.其中正確的有____________(只填序號).
【答案】②④⑤
【解析】
先根據(jù)圖象分析a、b、c的正負(fù),再根據(jù)對稱軸x=、與坐標(biāo)軸的交點、頂點等情況分析,即可判斷每一個選項的正確與否.
解:根據(jù)拋物線的開口方向可知a<0,它與y軸交點可知c>0,再根據(jù)對稱軸x=在y軸右邊,從而判斷b>0,
∴abc<0,即答案①錯誤;
由圖象可知拋物線對稱軸是直線x=1,即x==1,b=-2a,
∴2a+b=0,即答案②正確;
由圖象可知,當(dāng)x=-1時,對應(yīng)圖象上的點在x軸下方,函數(shù)值小于0,
∴a-b+c<0,即答案③錯誤;
觀察圖象可知,當(dāng)x=1時,函數(shù)取得最大值a+b+c,
∴當(dāng)x≠1時,取得的函數(shù)值ax2+bx+c<a+b+c,即a+b>ax2+bx,答案④正確;
根據(jù)圖象與x軸有兩個不同交點可知,b2-4ac>0,
∴4ac<b2,即答案⑤正確.
故答案為:②④⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連結(jié)EC.如果AB=AC,∠BAC=90°.
①當(dāng)點D在線段BC上時(與點B不重合),如圖1,請你判斷線段CE、BD之間的位置和數(shù)量關(guān)系(直接寫出結(jié)論);
②當(dāng)點D在線段BC的延長線上時,請你在圖2畫出圖形,判斷①中的結(jié)論是否仍然成立,并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=a(x﹣h)2+k(a≠0)的圖象經(jīng)過原點,最大值為16,且形狀與拋物線y=4x2+2x﹣3相同,則此函數(shù)的關(guān)系式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是邊長為1的正方形,四邊形EFGH是邊長為2的正方形,點D與點F重合,點B、D(F)、H在同一條直線上.將正方形ABCD沿F→H方向平移到點B與點H重合時停止.設(shè)點D,F之間的距離為x,正方形ABCD與正方形EFGH重疊部分的面積為y,則能大致反映y與x之間函數(shù)關(guān)系的圖像是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖把一個長方形紙片沿EF 折疊后點D、C分別落在D′、C′的位置,若∠AED′=50°,則∠EFC =( ).
A.50°B.130°C.65°D.115°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A1B1C,連接AA1,若∠AA1B1=15°,則∠B的度數(shù)是( )
A. 75° B. 60° C. 50° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為活躍聯(lián)歡晚會的氣氛,組織者設(shè)計了以下轉(zhuǎn)盤游戲:A、B兩個帶指針的轉(zhuǎn)盤分別被分成三個面積相等的扇形,轉(zhuǎn)盤A上的數(shù)字分別是1,6,8,轉(zhuǎn)盤B上的數(shù)字分別是4,5,7(兩個轉(zhuǎn)盤除表面數(shù)字不同外,其他完全相同).每次選擇2名同學(xué)分別撥動A、B兩個轉(zhuǎn)盤上的指針,使之產(chǎn)生旋轉(zhuǎn),指針停止后所指數(shù)字較大的一方為獲勝者,負(fù)者則表演一個節(jié)目(若箭頭恰好停留在分界線上,則重轉(zhuǎn)一次).作為游戲者,你會選擇A、B中哪個轉(zhuǎn)盤呢?并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連結(jié)EC.
(1)求證:AD=EC;
(2)求證:四邊形ADCE是菱形;
(3)若AB=AO,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最。咳舸嬖,請求出點P的坐標(biāo);若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com