【題目】如圖A、F、B、C是半圓O上的四個點(diǎn),四邊形OABC是平行四邊形,∠FAB=15°,連接OF交AB于點(diǎn)E,過點(diǎn)C作OF的平行線交AB的延長線于點(diǎn)D,延長AF交直線CD于點(diǎn)H.
(1)求證:CD是半圓O的切線;
(2)求 的比值;若DH=6,求EF和半徑OA的長.
【答案】
(1)解:連接OB,
∵OA=OB=OC,
∵四邊形OABC是平行四邊形,
∴AB=OC,
∴△AOB是等邊三角形,
∴∠AOB=60°,
∵∠FAD=15°,
∴∠BOF=30°,
∴∠AOF=∠BOF=30°,
∴OF⊥AB,
∵CD∥OF,
∴CD⊥AD,
∵AD∥OC,
∴OC⊥CD,
∴CD是半圓O的切線
(2)解:∵BC∥OA,
∴∠DBC=∠EAO=60°,
∴BD= BC= AB,
∴AE= AD,
∵EF∥DH,
∴△AEF∽△ADH,
∴ = = ,
∵DH=6,
∴EF=2,
∴ ,
∵OF=OA,
∴OE=OA﹣2
∵∠AOE=30°,
解得:OA=8+4
【解析】(1)連接OB,根據(jù)已知條件得到△AOB是等邊三角形,得到∠AOB=60°,根據(jù)圓周角定理得到∠AOF=∠BOF=30°,根據(jù)平行線的性質(zhì)得到OC⊥CD,由切線的判定定理即可得到結(jié)論;(2)根據(jù)平行線的性質(zhì)得到∠DBC=∠EAO=60°,解直角三角形得到BD= BC= AB,推出AE= AD,根據(jù)相似三角形的性質(zhì)得到 = ,求得EF=2,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】形如半圓型的量角器直徑為4cm,放在如圖所示的平面直角坐標(biāo)系中(量角器的中心與坐標(biāo)原點(diǎn)O重合,零刻度線在x軸上),連接60°和120°刻度線的一個端點(diǎn)P、Q,線段PQ交y軸于點(diǎn)A,則點(diǎn)A的坐標(biāo)為( )
A.(﹣1, )
B.(0, )
C.( ,0)
D.(1, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,BC=2,BC在x軸上,一次函數(shù)y=kx﹣2的圖象經(jīng)過A、C兩點(diǎn),并與y軸交于點(diǎn)E,反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)A.
(1)寫出點(diǎn)E的坐標(biāo);
(2)求一次函數(shù)和反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)x>0時,一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動點(diǎn),沿B→A→C的路徑移動,過點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于合肥濱湖新區(qū)的渡江戰(zhàn)役紀(jì)念館,實(shí)物圖如圖1所示,示意圖如圖2所示.某學(xué)校數(shù)學(xué)興趣小組通過測量得知,紀(jì)念館外輪廓斜坡AB的坡度i=1: ,底基BC=50m,∠ACB=135°,求館頂A離地面BC的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是矩形,對角線AC的垂直平分線交AD于點(diǎn)E,交BC于點(diǎn)F,連接AF,CE,解答下列問題:
(1)求證:四邊形AECF是菱形;
(2)記AB=a,BF=b,若a,b是方程x2﹣2(m+1)x+m2+1=0的兩根,問當(dāng)m為何值時,菱形AECF的周長為8 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD,過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長線于點(diǎn)F.
(1)求證:EF是⊙0的切線.
(2)如果⊙0的半徑為5,sin∠ADE= ,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點(diǎn).若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com